
Psychological Methods
The Text-Package: An R-Package for Analyzing and Visualizing Human
Language Using Natural Language Processing and Transformers
Oscar Kjell, Salvatore Giorgi, and H. Andrew Schwartz
Online First Publication, May 1, 2023. https://dx.doi.org/10.1037/met0000542

CITATION
Kjell, O., Giorgi, S., & Schwartz, H. A. (2023, May 1). The Text-Package: An R-Package for Analyzing and Visualizing Human
Language Using Natural Language Processing and Transformers. Psychological Methods. Advance online publication.
https://dx.doi.org/10.1037/met0000542

The Text-Package: An R-Package for Analyzing and Visualizing Human
Language Using Natural Language Processing and Transformers

Oscar Kjell1, 2, Salvatore Giorgi3, and H. Andrew Schwartz2
1 Department of Psychology, Lund University

2 Department of Computer Science, Stony Brook University
3 Department of Computer and Information Science, University of Pennsylvania

Abstract
The language that individuals use for expressing themselves contains rich psychological information. Recent
significant advances in Natural Language Processing (NLP) and Deep Learning (DL), namely transformers,
have resulted in large performance gains in tasks related to understanding natural language. However, these
state-of-the-art methods have not yet been made easily accessible for psychology researchers, nor designed
to be optimal for human-level analyses. This tutorial introduces text (https://r-text.org/), a new R-package for
analyzing and visualizing human language using transformers, the latest techniques from NLP and DL. The
text-package is both a modular solution for accessing state-of-the-art language models and an end-to-end
solution catered for human-level analyses. Hence, text provides user-friendly functions tailored to test
hypotheses in social sciences for both relatively small and large data sets. The tutorial describes methods for
analyzing text, providing functions with reliable defaults that can be used off-the-shelf as well as providing a
framework for the advanced users to build on for novel pipelines. The reader learns about three core meth-
ods: (1) textEmbed(): to transform text to modern transformer-based word embeddings; (2) textTrain() and
textPredict(): to train predictive models with embeddings as input, and use the models to predict from; (3)
textSimilarity() and textDistance(): to compute semantic similarity/distance scores between texts. The reader
also learns about two extended methods: (1) textProjection()/textProjectionPlot() and (2) textCentrality()/
textCentralityPlot(): to examine and visualize text within the embedding space.

Translational Abstract
Natural language is the fundamental way individuals communicate their thoughts and emotions to others.
Recent advances in Artificial Intelligence (AI), referred to as transformers, have resulted in large
increases in performance at most tasks related to understanding natural language. This tutorial introduces
how to use these state-of-the-art AI techniques in both custom research analyses as well as in completely
end-to-end analytic processes. We describe text, a software package which provides transformer-based
techniques intended to be easily accessible for social scientists. The text-package is open-source, written
for the statistical programming language R, and it is free to use or alter. It comprises user-friendly func-
tions to transform text to numeric representations, that are used for examining their relationship to other
variables or for visualizing statistically significant features of texts. Transformers can facilitate analyses
of natural language for gaining psychological insights with unprecedented accuracy and provide a more
detailed understanding of the human condition.

Keywords: Natural Language Processing, machine learning, computational language assessments,
transformers, #Rtext

Supplemental materials: https://doi.org/10.1037/met0000542.supp

Oscar Kjell https://orcid.org/0000-0002-2728-6278
Salvatore Giorgi https://orcid.org/0000-0001-7381-6295
H. Andrew Schwartz https://orcid.org/0000-0002-6383-3339
Oscar Kjell was funded by the Swedish Research Council (2019-06305)

and H. Andrew Schwartz was funded by a National Institutes of Health-
NIAAA (R01 AA028032). Tutorial data, models, and code: https://osf.io/

dgczt/. Oscar Kjell has co-founded a start-up using computational language
assessments to diagnose mental health problems.

The data are available at https://osf.io/dgczt/

The experiment materials are available at https://osf.io/dgczt/
Correspondence concerning this article should be addressed to Oscar

Kjell, Department of Psychology, Lund University, Box 117, 221 00 Lund,
Sweden. Email: oscar.kjell@psy.lu.se

1

Psychological Methods

© 2023 American Psychological Association
ISSN: 1082-989X https://doi.org/10.1037/met0000542

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

Ps
yc
ho
lo
gi
ca
lA

ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
tt
o
be

di
ss
em

in
at
ed

br
oa
dl
y.

https://r-text.org/
https://doi.org/10.1037/met0000542.supp
https://osf.io/dgczt/
https://osf.io/dgczt/
https://orcid.org/0000-0002-2728-6278
https://orcid.org/0000-0001-7381-6295
https://orcid.org/0000-0002-6383-3339
https://osf.io/dgczt/
https://osf.io/dgczt/
https://osf.io/dgczt/
https://osf.io/dgczt/
mailto:oscar.kjell@psy.lu.se
https://doi.org/10.1037/met0000542

How individuals express themselves and their state of mind
with natural language constitutes a wealth of information for
understanding them psychologically and socially (e.g., see Kern
et al., 2016; Kjell et al., 2019). “Language is the most common
and reliable way for people to translate their internal thoughts and
emotions into a form that others can understand” (Tausczik & Pen-
nebaker, 2010, p. 25). This tutorial explains how psychology
researchers can use recent advances in Artificial Intelligence (AI),
including Natural Language Processing (NLP) and Deep Learning,
to quantitatively analyze natural language.
Researchers in NLP have turned to open-vocabulary methods

that rely on patterns in linguistic data to derive models of lan-
guage. These methods leverage the idea that words may be repre-
sented by values based on how they co-occur in languages (e.g.,
Firth, 1957), and allow for modeling words according to the con-
texts in which they appear, rather than relying on a priori assump-
tions about word-category relations resulting in extremely
powerful models of language. In fact, the latest version of such
models, the deep learning-based transformers, have led to nothing
short of a transformation in the AI field concerned with language:
Natural Language Processing. Researchers have called for the use
of these language models to gain psychological insights (e.g.,
Eichstaedt et al., 2021).
The transformers method has universally increased the accuracy

of AI techniques for processing language. For example, the trans-
former-based model GPT-3, by OpenAI, is writing documents
believed to be authored by humans (Brown et al., 2020); and
BERT (Bidirectional Encoder Representations from Transformers;
Devlin et al., 2019), the first widely used, general purpose trans-
former network developed by Google, has already been referenced
in over 16,000 scholarly works in a period of only 2 years.1

The key to transformers’ success is that such models can repre-
sent words differently according to the context they are in. BERT
was released by Google and has been integrated into its Search
function; now it actually understands the difference between
“travel from Sweden to New York” and “travel from New York to
Sweden” (Nayak, 2019). This tutorial aims to make these methods
easily available to a broad audience within social and behavioral
sciences; as well as further developing and optimizing them for
human-level analyses. These state-of-the-art word embeddings
may be used to examine their relationships to (i.e., predict) numer-
ical variables, compute semantic similarity to other texts, or visu-
alize (statistically significant) words in various dimensions within
the word embedding space.
For this discussion, the type of data may broadly be categorized

into two (overlapping) types: First, everyday occurring language,
which, for example, include gaining insights from analyzing
recordings of spoken language in relation to emotional fluctuations
throughout the day (Sun et al., 2020); and social media text (Park
et al., 2015) to predict both physical (Eichstaedt et al., 2015) and
psychological (Eichstaedt et al., 2018) outcomes. Examining natu-
rally occurring language may also include analyzing emails, let-
ters, blogs, text messages, medical journals, speeches, diaries,
song texts, voice recordings etc., though one must consider ethical
and privacy issues when analyzing such text.
Second, probed language involves probing or asking partici-

pants to answer questions with spoken or written language. These
types of data have, for example, been used to measure and
describe psychological constructs through probed language-based

assessments as a complement to traditional rating scales (Kjell
et al., 2019, 2022), and analyze written narratives of traumatic life
events to predict health related outcomes (Campbell & Penne-
baker, 2003; Son et al., 2020). Probed language may also involve
asking participants to recall various memories, describe them-
selves in various ways, partake in stream-of-consciousness tasks
and so on.

In addition, language may be generated within an experimental
context. Computational language methods can, for example, be
used to enhance experimental control by matching word stimuli
according to semantic similarity (Dougal & Rotello, 2007; Gagné
et al., 2005), examining the text generated from experimental
manipulations (Garcia & Sikström, 2013) and using semantic sim-
ilarity of the names of objects to find significant correlations with
neural organizations in the brain (Carlson et al., 2014). The multi-
tude of applications of computational methods highlights its poten-
tial and flexibility as a research method.

This tutorial covers methods in an R-package called text
(https://r-text.org/) to carry out the use of transformers for psy-
chological research. The text-package is an open-source library
comprising tools for analyzing and visualizing various features of
texts; both in relation to other texts as well as numerical variables.
The package makes state-of-the-art NLP, statistics, and ML tech-
niques available to R users, with functions particularly targeting
social scientific applications. To map words to numeric represen-
tations, text-functions transform texts to word embeddings using
transformer-based pretrained language models. This tutorial
assumes very basic knowledge of R (R Core Team, 2022); so, for
a free, beginners tutorial see R for Data Science by (Grolemund &
Wickham, 2018).

Objectives and Aims

The text-package incorporates two main objectives. First, to serve R-
users as a point solution for converting text to contextual word embed-
dings—numeric representations of words—using a state-of-the-art AI
technique called transformers. These word embeddings may be used
for a large variety of tasks in the user’s own analyses (pipeline). The sec-
ond objective is to serve as an end-to-end solution, where text provides
powerful and accessible functions for analyzing and visualizing text in
relation to other text and numerical variables. This tutorial describes
both core and extended functionalities. Core functionalities are based on
standardmethods with empirical support, including: (a) transforming
text to word embeddings, (b) predictive modeling with word embed-
dings, and (c) computing semantic similarity scores between text.
The extended functionalities are less well-established, novel meth-
ods, aimed at supporting the core functionalities, including (a) visu-
alizing words’ position in the embedding space. The objective of the
text-package is to balance user-friendliness and flexibility while
simultaneously empowering with advanced analyses. Accessibility
is reflected in functions with reliable default settings selected by
experts in the NLP fields so that those with no experience can use out
of the box settings to test their research hypotheses. Further, visual-
izations aim to make it easy to understand what is going on in the
analyses; for example, displaying actual word embeddings and
tokens, plotting words, or viewing cross-validated predictive results.

1 Google Scholar accessed March 11, 2021.

2 KJELL, GIORGI, AND SCHWARTZ

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

Ps
yc
ho
lo
gi
ca
lA

ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
tt
o
be

di
ss
em

in
at
ed

br
oa
dl
y.

https://r-text.org/

Current Alternatives

There are few alternatives in R (R Core Team, 2022) that focus
on getting state-of-the-art word embeddings; and that have func-
tionalities tailored for analyzing embeddings in downstream tasks
relevant for social sciences and psychological research. Computer
scientists have predominantly used Python (Van Rossum & Drake,
1995), and Python-libraries such as the Differential Language
Analysis ToolKit (DLATK; Schwartz et al., 2017), PyTorch
(Paszke et al., 2019), spaCy (Honnibal, & Montani, 2017), and
NLTK (Bird et al., 2009). Further, even though computer scientists
use Python for standard NLP/ML tasks, few python packages
attempt to bridge this line of work with psychological research
such as DLATK. The text-package comprises an interface with
Python to get the state-of-the-art language models while also con-
ceptually building on DLATK, and drawing on experiences
learned from that project (here also see the web-application
Semantic Excel; Sikström et al., 2018).
There are some R-packages that allow for text mining (e.g.,

see tm [Feinerer & Hornik, 2019], tidytext [Silge & Robinson,
2016], and quanteda [Benoit et al., 2018]) and for various auto-
matic coding procedures of text responses (see shinyReCoR;
Andersen & Zehner, 2021). To our knowledge, there is only one
other R-package that enables the transformation of text to word
embeddings (RBERT; an R implementation of BERT; Bratt &
Harmon, 2020); however, it does not come with functions to use
these word embeddings including ML techniques. Additionally,
text comprises functions tailored for small data as well as big
data. Whereas other R-packages focus on text mining of big
data, text enables transformer-based embeddings as well as anal-
yses of relatively small data sets, which is often common in
social and behavioral sciences.

Installation of Text

The text-package can be downloaded and installed from CRAN
or Github. The text-package uses an R-package called reticulate
(Ushey et al., 2020) as an interface to Python (Van Rossum &
Drake, 1995) and the Python packages torch (Paszke et al., 2019),
transformers (Wolf et al., 2019), nltk (Bird, Klein, & Loper,
2009), and numpy (Oliphant, 2006). It is important to get versions
of these libraries to work together. The text-package includes
functions that help you set up an environment with the correct ver-
sions of these packages for your specific OS (that is tested for
Linux, MacOS, and Windows).
This tutorial was written for text Version 1.0. Tutorial data,

models and code can be retrieved at the open science framework
at: https://osf.io/dgczt/, where we will update the code for future
versions of the text-package. To install the text-package run:

Install text from CRAN

install.packages("text")

library(text)

Set-up anenvironment with text-requiredpython packages

textrpp_install()

#Initialize theenvironment — and save thesettings

for nexttime

textrpp_initialize(save_profile = TRUE)

If you experience problems with the installation, see the
extended installation guide for up-to-date information (https://r-
text.org/articles/Extended_Installation_Guide.html).

Core Functionality

The text-package has three core functionalities: (1) transforming
text to word embeddings, (2) predictive modeling with word
embeddings, and (3) comparing words or texts for semantic simi-
larity. These are described below, followed by the introduction of
two extended functionalities.

Transforming Text to State-of-the-Art Word
Embeddings

NLP is concerned with automatically processing and making sense
of digitized human language (for a broad and detailed treatment of
NLP methods see Jurafsky & Martin, 2020). The idea that each word
in human languages may be represented by numeric vectors dates
back at least to the 1950s (e.g., see Firth, 1957; Osgood et al., 1957).
Despite its long history, the field of NLP has undergone a sort of rev-
olution over the past 3 years, seeing substantial advances in the state-
of-the-art. These advances span over nearly every common task that
NLP attempts to solve including syntactic parsing, sentiment analysis,
question answers, and machine translation. All advances are tied to a
single method: transformers (Devlin et al., 2019; Rogers et al., 2020;
Vaswani et al., 2017).

The text-package implements these advances to enable the user
to access many state-of-the-art pretrained language models. In this
next part, word embeddings are described in more detail, followed
by a demonstration on how the text-package transforms text data
into word embeddings. These word embeddings are later used in
down-stream tasks to provide examples of how they may be used,
including predicting psychology related outcomes (e.g., psycho-
logical rating scale scores), and examining similarity in meaning
between texts. Hence, word embeddings may be seen as the back-
bone of most text-functions.

Word Embeddings

A word embedding is a list of values (an ordered vector) that
aim to numerically represent the meaning of a word. A word
embedding normally comprises several hundred numbers; so that
a word is represented by many dimensions. The numbers may be
seen as coordinates in a geometric space that comprises several
hundred dimensions (a high dimensional space). The closer two
words are in this space (i.e., the more similar their vector embed-
dings are), the more similar the words are expected to be in
meaning. In other words, embeddings capture the relationships
between words, where proximity in the high dimensional embed-
ding space signifies similarity in meaning. To represent several
words, sentences and paragraphs, word embeddings may be
aggregated. The aggregation can, for example, be through the
mean, maximum or minimum of each dimension of the word
embedding.

To train word embeddings with high quality requires a lot of
text data; where the approaches use the statistical patterns of how
words are used. “You shall know a word by the company it keeps”
(Firth, 1957, p. 11) is a core rationale underlying the creation of

THE TEXT-PACKAGE 3

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

Ps
yc
ho
lo
gi
ca
lA

ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
tt
o
be

di
ss
em

in
at
ed

br
oa
dl
y.

https://osf.io/dgczt/
https://r-text.org/articles/Extended_Installation_Guide.html
https://r-text.org/articles/Extended_Installation_Guide.html

word embeddings. Words within natural language are not ran-
domly distributed, instead contextual words are predictable and
define its meaning (Iliev et al., 2015). Hence, it is possible to use
this distribution to represent “the meaning of a word through the
contexts in which it has been observed in a corpus” (Erk, 2012,
p. 635). This may be achieved by constructing a table of word co-
occurrence counts, where the dimensions are extracted using a
dimension reduction technique such as the Singular Value Decom-
position (Golub & Kahan, 1965). Practically, the first column of
the frequency table may hold the words in a natural language, the
first row may hold word contexts (such as documents of texts) and
the rest of the cells hold the co-occurrence counts/frequency. Ulti-
mately, the words are represented by a vector containing a number
for each extracted dimension. Note that these types of approaches
are referred to as unsupervised, as no predefined categories or
judges are used to produce the numeric representations.

Decontextualized Word Embeddings: A Bag of Words

Decontextualized word embeddings (or semantic representations
as they were called) do not account for the context a word was in.
Earlier methodswere unable to capture the order that words appeared
in, so that words in a text were treated as a bag of scrambled words:
Bag of words (BOW) models (see Figure 1). The word embedding is

static (or decontextualized), so that the embedding for “happy” is
always the same even if it appeared in the context of “I am happy”
versus “I am not happy.” Examples of commonly used decontextual-
ized approaches include word2vec (Mikolov et al., 2013), Latent
Semantic Analysis (LSA; Deerwester et al., 1990) and Latent
Dirichlet allocation (LDA; Blei et al., 2003).

Contextualized Word Embeddings and Word Order

Contemporary NLP algorithms aim to extract the latent mean-
ings in text. These algorithms are based on deep neural net (or
deep learning) architectures to construct contextualized word
embeddings, using decontextualized word embeddings as input
(e.g., see BERT; Devlin et al., 2019). When using these algo-
rithms, a word’s embedding is different depending on the context
it was in and the order of the words in the context—this is
achieved by enabling the word embedding to be influenced by
other word embeddings in the context through a mechanism
referred to as self-attention.

The Deep Neural Network Architecture: The Layers and
Hidden States

As a deep learning transformer model, BERT comprises several
layers. Hidden states refer to the output of each layer; these may

Figure 1
An Illustration of How Information is Connected Within the Output of Different Language Model Architectures

w1

1.2
0.9
1.4

w2

0.2
1.7
2.3

w3

1.5
0.3
1.5

I run fast

w1

1.2
0.9
1.4

w2

0.2
1.7
2.3

w3

1.5
0.3
1.5

I run fast

BOW model LSTM model
Recurrent Neural Network

1.4
1.6
1.3

0.5
0.3
1.2

1.1
0.8
0.8

w1

1.2
0.9
1.4

w2

0.2
1.7
2.3

w3

1.5
0.3
1.5

I run fast

Self-attention model
Transformers

0.4
2.3
1.2

1.4
1.1
1.0

0.7
0.2
1.1

LU LU LU LU LU LU LU LU LU

Note. The BOW model is how traditional word embeddings, such as those from latent semantic analysis (LSA) or word2vec, are typically applied:
there is no notion of capturing word order or adjusting the individual word representations in light of the other words. LU = Look-up; the circles
describe a mechanism that looks-up words’ non-contextualized embeddings. BOW = bag of words (i.e., no transformations beyond non-contextualised
embeddings); LSTM = Long Short-Term Memory; w = word; squared symbols = word embeddings; gray = decontextualized word embeddings; stron-
ger shades of blue indicate more contextualized word embeddings. See the online article for the color version of this figure.

4 KJELL, GIORGI, AND SCHWARTZ

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

Ps
yc
ho
lo
gi
ca
lA

ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
tt
o
be

di
ss
em

in
at
ed

br
oa
dl
y.

be aggregated across layers to a word embedding that represents
each word (or sentence). The use of multiple layers enables the
models to capture nonlinear relationships. BERT-base comprises
12 layers, whereas BERT-large comprises 24 layers; where each
layer comprises numeric values for each dimension, which for
BERT is 768 dimensions. Hence, with BERT-large one token can
be represented with 18,432 (24 3 768) values. There are several
ways to make use of these layers: including only using one of the
layers or concatenating them to one longer embedding.
It is not yet fully understood how the various layers differ; and

the advice on how to best use them differs. In short, empirical
examinations indicate that “BERT’s intermediate layers encode a
rich hierarchy of linguistic information, with surface features at
the bottom, syntactic features in the middle and semantic features
at the top” (Jawahar et al., 2019, p. 1). Further, it has been demon-
strated that later BERT layers are more context specific (Ethayar-
ajh, 2019). Later we discuss how to use these layers in human
level tasks.

Self-Attention

Transformer’s deep neural net architecture has the self-attention
mechanism at its core (Vaswani et al., 2017). It is self-attention
that enables the model to combine information about surrounding
words at varying degrees. Thus, each surrounding word can influ-
ence the word embedding of the target word. In other words, self-
attention enables the algorithm to incorporate the embeddings of
other words’ embeddings in so far as it produces a more robust
representation of the target word. The self-attention mechanism
puts different attention or weight to different word embeddings
from the context depending on which appear to be most relevant.
During training, the transformer-based models have learned how
to parameterize the attention layers to amplify the influence of the
most relevant parts of a context.
The transformers’ self-attention mechanism may be compared

with previous models such as Long Short-Term Memory models
(LSTM; Hochreiter & Schmidhuber, 1997). These models are based
on recurrent neural networks, where the influence of the context
mechanism is less pervasive than in transformers. In LSTM the
influence of the context is only based on the previous state—the
embedding of the word just to the left of the target word, which in
turn was influenced by its surrounding words, and so on. The model
can also be run across the sequence backward, such that the previ-
ous state is an embedding of the word to the right. However, it still
requires for nonadjacent pairs of words to pass information about
each other through the embeddings between them rather than
directly. With self-attention all words are connected with the poten-
tial to influence each other’s meaning through the word embed-
dings. The transformers can model the dependency of every two
words in a text sequence and are also suitable for long range
dependencies. The architecture of the transformers also reduces the
amount of sequential computational steps compared with previous
contemporary models such as LSTMs; and this results in decreased
information loss and faster training times through parallel process-
ing (Wolf et al., 2019).
These descriptions are at a very high level aimed to provide the

reader with a sufficient understanding to be able to make use of
the key functionality of transformers: turning text into feature vec-
tors (embeddings). There are many recent papers specifically

introducing deep learning with a focus on Natural Language Proc-
essing (e.g., see Lauriola et al., 2022), in length discussing the
opportunities and risks of using these models (Bommasani et al.,
2021) as well as reviews/surveys providing a broader overview
and deeper understanding about various model architectures of
neural networks such as recurrent, recursive, convolutional, and
attention models (Babi�c et al., 2020; Otter et al., 2019; Qiu et al.,
2020), and specifically focusing on the BERT models (Rogers
et al., 2020).

Performance of BERT

Devlin et al. (2019) demonstrated that BERT obtains substantial
improvement on a wide range of NLP tasks. For example, it
achieved a 7.7% point absolute improvement on the language
understanding tasks called GLUE (General Language Understand-
ing Evaluation); and a 4.6% absolute improvement accuracy on
the MultiNLI (the Multi-Genre Natural Language Inference
corpus, which comprises several hundred thousands of sentence
pairs).

Accessible Pretrained Language Models in Text

To get contextualized word embeddings for your text data, the
text-package connects with HuggingFace’s Transformers library
(Wolf et al., 2019) in Python. This enables the users to imple-
ment many state-of-the-art pretrained language models, includ-
ing XLnet (Yang et al., 2019), RoBERTa (Liu et al., 2019), and
ALBERT (Lan et al., 2019). As the name suggests, a pretrained
model has already been trained on other data; so that the model
can be applied to your text to retrieve high-quality embeddings.
This is good considering that training a high-quality deep learn-
ing language model requires a lot of computational resources;
Wolf et al. (2019) point out that RoBERTa was trained on 160
GB text, and that training this on a typical cloud computing serv-
ice would cost around 100K USD. Consequently, some models
have been developed with the focus of being smaller and requir-
ing less computational resources to be trained (e.g., see Destil-
BERT; Sanh et al., 2019), whereas others have had the focus on
achieving improved performance (e.g., XLNet; Yang et al.,
2019).

Some models include multiple languages such as multilin-
gual BERT (mBERT), which is trained on text from the top 104
languages with the largest Wikipedia entries. Hence, the same
model includes several languages, where similar languages
(e.g., Germanic, Slavic) are found close to each other in the
embedding space (Libovickỳ et al., 2019). mBERT is found to
learn cross-lingual word alignment with high-quality (Libov-
ickỳ et al., 2019). The text-package implements these multilin-
gual models.

Model and Word Embedding Specifics

Different models may be based on different types of (domain)
text, and use different tokenization (described in detail below),
number of layers and hidden states. It is useful to consider these
aspects when selecting an appropriate model and its settings,
although default settings in text will often achieve apt results.

Type of Domain Text Used in Pretraining. Word embed-
dings become better when there is high domain similarity between
the text used to create the language model and the text that should

THE TEXT-PACKAGE 5

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

Ps
yc
ho
lo
gi
ca
lA

ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
tt
o
be

di
ss
em

in
at
ed

br
oa
dl
y.

be interpreted/used for down-stream tasks. To create models for a
narrow domain can however be challenging because pretrained
models require large quantities of text data (and computational
resources). Nevertheless, it is worth thinking about the type of text
used to train the models, and how that might influence your
results. BERT was originally trained using Wikipedia text; how-
ever, other BERT models have been fine-tuned on clinical text
(Alsentzer et al., 2019) and scientific text data (Beltagy et al.,
2019). These and many more models are available through the
text-package.
Uncased Versus Cased Models. Uncased models convert all

words to lowercase, whereas cased models keep the casing of the
text. Select a cased model if you think that letter casing will be
helpful for your analyses. If you do not think that casing will be
important for your task, it is likely better to select an uncased
model because it comprises fewer words (e.g., happy and Happy
are not two different words); thus, has had the chance to learn
more high-quality embeddings.
Sequence Length of the Input. You can only impute a lim-

ited amount of text (tokens) to many language models at the time.
For the BERT model the standard limit is 512 tokens at a time.
This means that each word can be contextually influenced by a
maximum of 511 tokens. If longer sequences of text are submitted
to the text-package function, the text will be split up in smaller
chunks; and then the word embeddings may be aggregated to rep-
resent the entire text.
Tokens and Tokenizers. A token is a string of characters

with a meaning; and a tokenizer is a function that splits up senten-
ces and words to tokens. Tokenizers may differ across models.
Each token gets its own embedding. Common words are tokenized
as themselves, whereas uncommon words that are not part of a
pretrained model will be tokenized into smaller parts each having
their own embedding. Punctuation characters (e.g., “.,” “!,” and
“?”) also tend to get tokenized as individual tokens. BERT also
uses tokens to indicate delimiter to each input: [CLS] and [SEP].
The [CLS] token is always put to indicate the start of the sequence
and it is often used to represent the whole sequence. The [SEP] to-
ken stands for separator, and this tag is used to separate sentences
during the pretraining tasks of BERT that include predicting the
next sentence.
As an example, the sentence: “I’m feeling relatedness with

others” is tokenized to “[CLS] I’m feeling related ##ness with
others [SEP]”; where “##” indicates that “ness” was originally
attached to “related.” “Relatedness” was tokenized this way
because it was not present within (this version of) BERT. Instead,
the two-word embeddings for “related” and “ness” are aggregated
to represent relatedness.
Layers. To select the type of model and number of layers

may be based on systematic, empirical research. Two systemic
studies evaluating different transformers models found that
RoBERTa (Liu et al., 2019) consistently performs better than
BERT on human-level tasks (e.g., predicting characteristics of
the person that authored a text) including predicting the demo-
graphics (age, gender), personality (extraversion, openness) and
mental health (suicide risk) of individual based on their text
(Ganesan et al., 2021; Matero et al., 2021). For human level
tasks, using the four last layers or the second to last layer have

generally been found to yield good results; but recently Matero
et al. (2021) more carefully examined which layer(s) that pro-
duce most accurate results in predicting depression related
measures, which suggested that “layer 19 (sixth-to last) is the
most ideal by itself” (p. 1).

Limitations of Transformers. Transformer models are very
large. While researchers have developed ways to shrink mod-
els, the best versions of these models are still scaling exponen-
tially. That is, the size of the files defining the models that
users need is increasing more rapidly than the performance
gains. While BERT-base comprises 110M parameters and
achieves a Spearman rho of .86 on a standard semantic simi-
larity task, BERT-large is approximately three times that size
comprising 336M and achieves only a modest improvement in
the same task: q = .87. With costs of storage and memory
fairly inexpensive today, it may often be more ideal to use the
larger models at the expense of needing better computing
equipment, but this could exclude users with more limited
computing resources. Further, it is very expensive to create
your own model.

Functions: Mapping Text to Numbers (i.e., Word
Embeddings)

The text-package includes three functions to map text to word
embeddings. The textEmbed() is a high-level function that encompasses
both textEmbedRawLayers() and textEmbedLayerAggregation(). The
textEmbedRawLayers() function retrieves layers and hidden states from
the language model; and the textEmbedLayerAggregation() function
aggregates these layers to form word embeddings. It is possible to get
both contextualized and decontextualized embeddings for individual
words (i.e., where only one word at a time has been sent to the model).

textEmbed()

The textEmbed() function automatically transforms charac-
ter variables in a given dataset (i.e., a dataframe or a tibble)
to word embeddings. It is the main embedding function in
text; and can output contextualized (and decontextualized)
embeddings for tokens (i.e., the embeddings for each single
word instance of each text) and texts (i.e., single embeddings
per text taken from aggregating all token embeddings of the
text).2

Example text

texts <- c("I’m feeling relatedness with

others", "That’s great!")

Defaults

embeddings <- textEmbed(texts)

Output

embeddings$tokens

2
“Words” are defined by how the tokenizer breaks up the text string into

individual units, often called unigrams. These may not always reflect what
are conventionally called “words.” See https://huggingface.co/docs/
tokenizers/index for a description of the different tokenizers available from
HuggingFace’s transformers package.

6 KJELL, GIORGI, AND SCHWARTZ

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

Ps
yc
ho
lo
gi
ca
lA

ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
tt
o
be

di
ss
em

in
at
ed

br
oa
dl
y.

https://huggingface.co/docs/tokenizers/index
https://huggingface.co/docs/tokenizers/index

$texts
$texts[[1]]
A tibble: 10 × 771

tokens
<chr>

Dim1
<dbl>

Dim2
<dbl>

Dim3
<dbl>

[CLS] 0.467 0.0459 �0.222
i 0.593 0.198 �0.384
‘ 0.0611 0.0160 �0.0248
m 0.236 0.231 �0.552
feeling �0.402 0.0777 0.252
related 0.230 �0.400 0.479
#ness �0.695 �0.328 0.782
with 0.264 0.219 1.11
others �0.298 0.0784 0.139
[SEP] 0.0446 0.0103 �0.0345

. . . with 765 more variables: Dim4 <dbl>, Dim5 <dbl>,
Dim6 <dbl>, . . .

. . .
Output

embeddings$texts

$texts
$texts[[1]]

A tibble: 10 × 771

Dim1_texts <dbl> Dim2_texts <dbl> Dim3_texts <dbl>

0.0501 0.0149 0.155
0.0942 �0.104 �0.0625
. . . with 765 more variables: Dim4_texts <dbl>,

Dim5_texts <dbl>, Dim6_text <dbl>, . . .

. . .

The Language Model

The pretrained language model is set with the model setting
in textEmbed() (or textEmbedRawLayers()). The default model
is “bert-base-uncased,” and other models can be specified by
using their HuggingFace identifier (https://huggingface.co/
models) such as “roberta-base” (Liu et al., 2019), “distilbert-
base-uncase” (Sanh et al., 2019), or “gpt2” (Radford et al.,
2019). When running a language model for the first time, the
text-package automatically downloads it using the python
package transformers. The files necessary to run a model are
cached in a subdirectory of the user’s home directory called
.cache. Subsequent calls to text methods that use the same
model will directly access the model in cache rather than
downloading it again. The textModels() function lists models
and tokenizers that you have downloaded, and textModelsRe-
move(“model-name”) enables you to delete specific models
and its accompanying files.
This tutorial uses example data that is accessible through the

text-package. It is a subset from a study (see Kjell et al., 2019)
where participants have described their satisfaction with life and
harmony in life (or lack thereof) with a text response, 10 descriptive
words or rating scales including the Satisfaction with Life Scale
(SWLS; Diener et al., 1985) and the Harmony in Life Scale (HILS;
Kjell et al., 2016). To embed text and build predictive models takes
time. Embedding the included text examples takes approximately
10 min using a standard laptop. Word embeddings and models for
the tutorial have been saved as part of the open tutorial data, so it is
possible to follow the tutorial without running the most time-

consuming functions (note that it is possible to speed up the embed-
ding process with access to graphics processing units, GPU).

The Layers

The textEmbed() function has the layers parameter for selecting
the layer(s) to extract (default = the second to last layer). The func-
tion also provides parameters to aggregate the layers in different
ways: the aggregation_from_layers_to_tokens parameter controls
how to aggregate layers representing the same token (default =
“concatenate”). The aggregation_from_tokens_to_texts parameter
controls how embeddings from different tokens should be aggregated
to represent a text (default = “mean”). These defaults follow conven-
tions from Natural Language Processing literature using transformers
for regression and classification (Ganesan et al., 2021).

Look at example data included in the text-package

comprising both text and numerical variables (note that

there are only 40 participants in this example).

Language_based_assessment_data_8

Transform the text/word data to word embeddings

(see help(textEmbed) to see the default settings).

word_embeddings <- textEmbed(

Language_based_assessment_data_8,

model = "bert-base-uncased",

aggregation_from_layers_to_tokens = "concatenate",

aggregation_from_tokens_to_texts = "mean",

keep_token_embeddings = FALSE

)

See how the word embeddings are structured

word_embeddings

Save the word embeddings to avoid having to embed the

text again. It is good practice to save output from

analyses that take a lot of time to compute, which is

often the case when analyzing text data.

saveRDS(word_embeddings, "word_embeddings.rds")

Get the saved word embeddings (again)

word_embeddings <- readRDS("word_embeddings.rds")

Note that one of the output layers is referred to as layer 0, which
is the original input embedding to BERT; and hence, it is not
contextualized.

textEmbedRawLayers(). The textEmbedRawLayers() takes
text as input, and returns the hidden states for each token of the
text, including the [CLS] and the [SEP]. This gives you more con-
trol over the embedding process compared with the textEmbed().
The output below shows the hidden states of layer 11 and 12 for
each word/token of “I am fine” (i.e., textEmbedRawLayers()
returns the layers in its raw form rather than aggregating them,
which is the default in textEmbed()).

Get hidden states for "I am fine"

imf_embeddings_11_12 <- textEmbedRawLayers(

"I am fine",

layers = 11:12

)

imf_embeddings_11_12

THE TEXT-PACKAGE 7

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

Ps
yc
ho
lo
gi
ca
lA

ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
tt
o
be

di
ss
em

in
at
ed

br
oa
dl
y.

https://huggingface.co/models
https://huggingface.co/models

OUTPUT

$context_tokens
$context_tokens$texts
$context_tokens$texts[[1]]
A tibble: 10 × 771

tokens
<chr>

token_id
<int>

layer_
number
<int>

Dim1
<dbl>

Dim2
<dbl>

Dim3
<dbl>

[CLS] 1 11 0.266 �0.0910 �0.0521
i 2 11 0.178 �0.296 0.188
am 3 11 �0.114 �0.542 0.0757
fine 4 11 1.18 �0.434 �0.317
[SEP] 5 11 0.0461 0.0134 �0.0311
[CLS] 1 12 0.0609 0.377 0.213
i 2 12 �0.173 0.0227 0.0647
am 3 12 �0.406 �0.319 0.128
fine 4 12 0.763 �0.373 �0.009
[SEP] 5 12 0.798 �0.0405 �0.324
. . . with 765 more variables: Dim4 <dbl>, Dim5 <dbl>, Dim6
<dbl>, . . .

textEmbedLayerAggregation(). The textEmbedLayerAg-
gregation() function aggregates the hidden states from textEm-
bedRawLayers(). It is possible to select different methods for
how layers and tokens are aggregated. The returned object is a
word embedding that represents the entire text. Below we
show how to (a) aggregate hidden states by concatenating
layers 11 and 12, and computing the mean of each dimension
across tokens (yielding a word embedding with 1,536 dimen-
sions); and (b) only selecting layer 11 and computing the mean
across tokens (yielding a word embedding with 768 dimen-
sions).

1. Concatenate layers(results in 1,536 dimensions).

textEmbedLayerAggregation(

imf_embeddings_11_12$context_tokens,

layers = 11:12,

aggregation_from_layers_to_tokens = "concatenate",

aggregation_from_tokens_to_texts = "mean"

)

OUTPUT

$x

A tibble: 1 × 1,536
Dim1
<dbl>

Dim2
<dbl>

Dim3
<dbl>

Dim4
<dbl>

Dim5
<dbl>

Dim6
<dbl>

0.311 �0.270 �0.0274 �0.408 0.202 0.113
. . . with 1,530 more variables: Dim7, Dim8, Dim9, . . .

2. Only select layer 11 (768 dimensions).

textEmbedLayerAggregation(

imf_embeddings_11_12$context_tokens,

layers = 11,

aggregation_from_tokens_to_texts = "mean"

)

OUTPUT

$x
A tibble: 1 × 768
Dim1
<dbl>

Dim2
<dbl>

Dim3
<dbl>

Dim4
<dbl>

Dim5
<dbl>

Dim6
<dbl>

0.311 �0.270 �0.0274 �0.408 0.202 0.113
. . . with 762 more variables: Dim7, Dim8, Dim9, . . .

These word embeddings can be used for many different pur-
poses and kinds of analyses. As such, the text-package serves R-
users as a point solution for transforming text to state-of-the-art
word embeddings that are ready to be used for their specific tasks.
The next part of the tutorial exemplifies how word embeddings
may be used and how the text-package may serve as an end-to-end
solution that provides AI techniques tailored for social and behav-
ioral scientists.

Predictive Modeling With Word Embeddings

A common use of word embeddings is as input for statistical
learning based predictive modeling (also known as machine learn-
ing). In such work for psychology, one often attempts to “predict”
a score for a standard psychological assessment from language use
(Kjell et al., 2021, Park et al., 2015). While there are endless types
of predictive models from statistical learning in which one could
input embeddings (see James et al., 2021, for a good introduction)
numerous recent empirical studies have demonstrated that when
using modern contextual embeddings, L2-penalized linear models
yield state-of-the-art results (Ganesan et al., 2021; Kjell et al.,
2022; Matero et al., 2019). For example, Matero et al. (2019) used
L2 regularized logistic regression on top of transformer-based con-
textual embeddings to achieve top results on the computational lin-
guistics for psychology 2019 Shared task B (“CLPsych-2019”;
Zirikly et al., 2019), which compared 28 predictive systems, using
techniques varying from convolutional neural networks (CNNs) to
random forests or multilayer perceptrons, from 11 participating
teams. Shared tasks are particularly robust evaluations because the
system designers are not giving the true labels but rather, they
send their predictions based on text without labels to a third party
that runs the evaluation and reports the accuracies. Many other
recent shared tasks have similarly confirmed systems with L2
penalized linear models on top of contextual embeddings to be
among the best performing, such as a BERT-based system for the
SemEval-2020 task on sentiment analysis (Palomino & Ochoa-
Luna, 2020) or a system combining multiple contextual embed-
dings via an L2 penalized linear regression (“ridge regression”)
layer for the SemEval-2020 task on humor detection (Hossain
et al., 2020; Morishita et al., 2020).3 These works support the idea
that because transformer-based contextual embeddings produce
state-of-the-art semantic representations of text itself, sophisti-
cated models on top of them are not necessary (and sometimes
overfit) for producing accurate predictions (Bommasani et al.,
2021). Next, we describe how these techniques are used in more
detail.

3 Note that in many modern NLP papers and deep learning packages, an
L2 penalization is referred to as “weight decay.”

8 KJELL, GIORGI, AND SCHWARTZ

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

Ps
yc
ho
lo
gi
ca
lA

ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
tt
o
be

di
ss
em

in
at
ed

br
oa
dl
y.

THE TEXT-PACKAGE 9

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

Ps
yc
ho
lo
gi
ca
lA

ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
tt
o
be

di
ss
em

in
at
ed

br
oa
dl
y.

Word Embeddings as Input to a Predictive Model

The word embeddings may be used in predictive models such as
multiple linear regression:

y = b0 + b1∗x1...+ bm∗xm + 1

where y denotes the observed values (in which ŷ represents the
predicted value), x1… xm the predictors, i.e., the dimensions of
the word embeddings (where the subscript refers to the mth dimen-
sion), β0 the constant, β1… βm the coefficients that define the
relationship between embeddings and the outcome, and ε the error
term.
Considering that the word embeddings often comprise many

dimensions, it is often useful to first carry out a dimension reduction
technique. To achieve this, Principal Component Analysis (e.g., see
Wold et al., 1987) is implemented in text because we have noticed
that it is particularly efficient for reducing the dimensionality of
word embeddings. It is possible to select other statistical prediction
models in text, including using ridge (L2 penalized) regression
by itself (Hoerl & Kennard, 1970), lasso regression (also called
L1-penalized model; Tibshirani, 1996), or a mix of L1 and
L2-penalized regression (i.e., “elastic-net” regression; Zou, &
Hastie, 2005) and for categorical variables ridge-penalized logistic
regression or random forests (e.g., see Ho, 1995). Although text sup-
ports lasso and elastic-net (the latter is a composite of both a lasso
and ridge penalty), it is worth noting that the top systems in the pre-
viously mentioned tasks use only a ridge penalty (Matero et al.,
2019), which is also the default in the most popular contextual
embedding library, transformers (controlled with the “weight_de-
cay” in the pytorch library it utilizes). This lack of utilization for
dense embeddings is probably because any regularization involving
a lasso is designed for sparse input information (Ganguli &
Sompolinsky, 2012), which is not present in most embeddings.
Embeddings are typically dense and rotationally invariant. In other
words, singular dimensions do not necessarily correspond to distinct
sets of words. On the other hand, for nondense input vectors, such as
with dimensions corresponding to counts of particular words—a
multihot encoding or word count vector—the lasso has been
found beneficial (Schwartz et al., 2013).

Cross Validation

To evaluate the predictions made by a statistical model, it is
possible to correlate the predicted values with the observed val-
ues (i.e., cor[y, ŷ]) using cross-validation. Cross validation is a
technique that may be used to evaluate and select a statistical
model with minimal overfit (for a more detailed discussion
on cross validation in psychology, e.g., see Mosier, 1951;
Yarkoni & Westfall, 2017). Overfitting arises when data-
specific errors or noise are modeled, which results in a
model that is bad at generalizing to other data. The cross-
validation methods aim to limit this risk by estimating a

model’s predictive ability while simultaneously accounting for
its ability to generalize (e.g., see Browne, 2000). The simplest
form of a cross validation method randomly divides a dataset
into a training-set and a testing-set. The parameters, that is,
the β…βm in the specified regression above, are estimated
in the training-set; and then applied to the test-set
to predict values (ŷ) that can be compared with the observed
values (y). Using this method results in an out-of-sample per-
formance, where the trained model is applied on new data from
the same population.

K-Fold Cross Validation

K-fold cross validation is a procedure to divide the training
and testing sets efficiently. If data are scarce, it may be consid-
ered wasteful to not use all data, for example, to only use 50%
of the data for training and 50% only for testing. First, it is pos-
sible to run the procedure again by alternating the purpose of the
data sets, so that the original testing-set becomes the training-set,
and the original training-set becomes the testing-set: In this way
all data will have predictions that can be correlated with the
observed values. Second, to make better parameter estimations
it is possible to get more power in the statistical models by mak-
ing sure that the training set is larger. One common way is to
select 90% of the data to the training set and 10% for the testing;
and then alter the purpose of the data as previously described.
This is done ten times, so that all cases get a prediction.
Hence, k in k-fold refers to the number of groups (or folds);
so, the described procedure is called 10-fold cross validation.
It is also possible to train on all but one case (that is called
leave-one-out cross validation). Leave-one-out cross validation
is good for very small dataset, whereas for larger dataset it
requires a lot of computational power and time (for rather
small gains).

Nested K-Fold Cross Validation. To use nested cross valida-
tion, including train and test loops in the inner fold of each outside
fold, is also a way to make better use of the data (see Figure 3). The
above cross validation method with test, train and development sets
focuses on achieving more accurate estimates of the machine learning
approach, which is good when comparing machine learning algo-
rithms. The nested k-fold cross validation focuses on achieving a

Cross ValidationWith Test, Train, and Development Sets. To
fit models with hyperparameters (e.g., the penalty in ridge regres-
sion), a development set (also called assessment set) can be used
to evaluate on. Figure 2 shows how the training set in the outside
fold is split into a training (or analysis) set and development
(assessment) set. Hence, the training set is used to fit models with
different penalties; these are then assessed in the development set.
The model with the best result (e.g., evaluated using the correla-
tions between observed and predicted scores) is subsequently
applied in the test set of the outside fold. This procedure is
repeated for all folds.

more accurate model; but tends to take longer time because more
models need to be fitted and evaluated.

Applying Predictive Models to New Data

Language-based predictive models can be applied to new data.
Independently trained language models may be applied to new data
to examine semantic-psychological features such as valence or
arousal. It is also easy to share predictive models between projects
and researchers. For example, it is possible to develop predictive
models for valence and arousal, based on the Affective norms for
English Words (ANEW; Bradley & Lang, 1999). The ANEW is a
list of more than 1,000 words that have been rated according to va-
lence, dominance, and arousal by participants. A valence model can
be created by predicting valence from the word embeddings of the
words in the list. First the model can be evaluated using cross vali-
dation to see how good it is; and then it can be saved without using
cross validation to use all the data. This model can now be used to
estimate the valence of any word or set of text represented by a
word embedding based on the same language model (and settings)
originally used to create the word embeddings in the predictive
model. Hence, it is a flexible method considering that it is possible

to get predictions for words that were not in the original model/
words list, since the estimated parameters are applied to the dimen-
sions of the word embeddings.

Functions

model_description = “author(s): XXX; data: N = XXX, population =
XXX; publication: title = XXX; description: e.g., measure details etc.”

Figure 3
Example of Nested Cross Validation With Two Outside Folds and Four Inside Folds

outside fold 1 Test Train
outside fold 2 Train Test

inside fold 1 Test Train
inside fold 2 Train Test Train
inside fold 3 Train Test Train
inside fold 4 Train Test

inside fold 1 Test Train
inside fold 2 Train Test Train
inside fold 3 Train Test Train
inside fold 4 Train Test

The best performing model with
hyperparameters is applied on
the test data

Settings in textTrain()
outside_folds = 22
inside_folds = 44
cv_method = "cv_folds"

Note. Prioritizing more outside than inside folds makes often more sense. See the online article for the color version of this figure.

Figure 2
Cross Validation With Three Outside Folds; and ¾ Analysis and ¼ Development Set

outside fold 1 Test Train
outside fold 22 Train Test Train
outside fold 33 Train Test

1 The best performing model with hyperparameters is applied on the test data
2-3 Inner folds of outside folds 2 and 3 are not shown

inside fold of outside fold 1 Development/Assessment Train/Analysis

Settings in textTrain()
outside_folds = 33
inside_folds = 3/44
cv_method = "validation_split"

Deve
1

Note. See the online article for the color version of this figure.

10 KJELL, GIORGI, AND SCHWARTZ

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

Ps
yc
ho
lo
gi
ca
lA

ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
tt
o
be

di
ss
em

in
at
ed

br
oa
dl
y.

textTrain(). The textTrain() function is used to examine
how well the word embeddings from a text can predict a numeric
or categorical variable, based on the different cross-validation
methods described above. The textTrain() function is a wrapper
for textTrainRegression() and textTrainRandomForest(). In the
example below we examine how well the satisfaction text-responses
can predict the rating scale scores from the Satisfaction with life
scale. We advise researchers to share their predictive models,
for example, on their Open Science Framework account (https://
osf.io/) or GitHub. For this purpose, it is possible to attach a descrip-
tion of the data andmodel by describing it in the describe_model set-
ting. For example, use the following format:

https://osf.io/
https://osf.io/
https://osf.io/
https://osf.io/

Examine therelationship between satisfactiontext and

the corresponding rating scale

model_satisfactiontext_swls <- textTrain(

x = word_embeddings$texts$satisfactiontexts, # the predictor

variables (i.e., the word embeddings)

y = Language_based_assessment_data_8$swlstotal,#thecriterion

variable(i.e.,theratingscalescore.

model_description="author(s):Kjell,Giorgi,&Schwartz;

data:N=40,population =Online,Mechanical Turk;publication:

title=Examplefordemo; description: swls=the satisfaction

withlife scale"

)

Examine thecorrelation between predicted andobserved

Harmonyinlifescalescores

model_satisfactiontext_swls$results

OUTPUT:

Pearson’sproduct-moment correlation

data:predy_y$predictionsandpredy_y$y

t =3.9396;df =38, p-value =.0001688

alternative hypothesis:truecorrelation is

greaterthan0

95% confidence interval:

0.3199934 1.0000000

sample estimates:

cor

0.5385082

Examine thenamesin theobject returnedfrom

training

names(model_satisfactiontext_swls)

#OUTPUT:

[1] "predictions"

[2] "final_recipe"

[3] "final_model"

[4] "model_description"

[5] "results"

The returned output from training includes: (a) the cross-
validated predictions with the observed values and row id; (b)
the final “recipe” with information about how to preprocess
the data before using it for training/prediction; (c) the final
model with model information, which can be used for predic-
tion, (d) the model description contain information about the
options used to create the model as well as the information
added by the user; and (e) the results including a comparison
between cross-validated predictions and observed values/cate-
gories. The result for numeric values is by default a Pearson
correlation, which can be changed with method_cor. The
results for a classification task include a Fisher’s Exact test for
Count Data, Pearson’s chi-square test with Yates’ continuity cor-
rection, a plotted ROC curve and metrics from the R-package
yardstick (Kuhn & Vaughan, 2020b) including accuracy, balanced
accuracy (bal_accuracy), specificity (spec), sensitivity (sens), and
kappa (kap).

textTrainLists(). The textTrainLists() runs through several
text variables (i.e., lists of word embeddings) and/or numeric vari-
ables at the same time.

Predicting several outcomes from several word embeddings

models_words_ratings <- textTrainLists(

word_embeddings$texts[1:2],

Language_based_assessment_data_8[5:6]

)

See results

models_words_ratings$results

OUTPUT

descriptions
<chr>

correlation
<chr>

df
<chr>

p_value
<chr>

t_statistics
<chr>

alternative
<chr>

p_value_
corrected

<dbl>

satisfactiontexts_hilstotal 0.45 38 0.00,172 3.12 greater 3.44e-03
harmonytexts_hilstotal 0.69 38 5.36e-07 5.80 greater 2.15e-06
satisfactiontexts_swlstotal 0.54 38 0.00,017 3.94 greater 5.07e-04
harmonytexts_swlstotal 0.43 38 0.00,281 2.94 greater 3.44e-03

textPredict(). Trained models created by textTrain() can be
applied to new data sets. In the next example we download and
apply a model that has been trained to predict valence. This model
was based on a list of nearly 14,000 words that were rated on va-
lence, arousal and dominance (Warriner et al., 2013). To achieve
the prediction we use the textPredict() function.

Read a valence trained prediction model (download it from

https://osf.io/dgczt/)

valence_Warriner_L11<- readRDS(

"valence_Warriner_L11.rds"

)

Examine the model

valence_Warriner_L11

PART OF THE OUTPUT

Pearson’s product-moment correlation

data: predy_y$predictions and predy_y$y

t = 126.76, df = 13913, p-value < 2.2e-16

alternative hypothesis: true correlation is

greater than 0

95 percent confidence interval:

0.7255292 1.0000000

sample estimates:

cor

0.7320673

Apply the model to the satisfaction text

satisfaction_text_valence <- textPredict(

valence_Warriner_L11,

word_mbeddings$texts$satisfactiontexts

)

Examine the correlation between the predicted valence and

the Satisfaction with life scale score

psych::corr.test(

satisfaction_text_valence$word_embeddings__ypred,

Language_based_assessment_data_8$swlstotal

)

OUTPUT

THE TEXT-PACKAGE 11

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

Ps
yc
ho
lo
gi
ca
lA

ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
tt
o
be

di
ss
em

in
at
ed

br
oa
dl
y.

Call:psych::corr.test(x=satisfaction_text_valence$.pred,y=

Language_based_assessment_data_8$swlstotal)

Correlationmatrix

[1]0.64

SampleSize

[1]40

Probabilityvaluesadjustedformultipletests.

[1]0

Computing Semantic Similarity and Distance

Word embeddings may be used to measure how similar two
words/texts are in meaning. The values composing a word
embedding may be seen as coordinates in a high dimensional
space; and the more similar two embedding vectors are the closer
they are positioned in the space. There are many ways to capture
how closely positioned two vectors are; in text many common
similarity and distance measures can be used, including “cosine,”
“euclidean,” “maximum,” “manhattan,” “canberra,” “binary,” or
“minkowski” (for a review of similarity measures see Chandra-
sekaran & Mago, 2022). The default similarity measure in text,
is to measure the cosine of the angle between them (see a simpli-
fied illustration in Figure 4).
Similar to a correlation, the cosine can range from�1 to 1 (see

Wickens, 2014, for a discussion on how correlation and cosine
are mathematically related); but in the embedding space the co-
sine between two words is typically not much below 0. The
smaller the angle, the higher the cosine is, and thus, the more
similar are the embeddings (this cosine measure is referred to as
a semantic similarity score).
The cosine may be seen as an unstandardized effect size indicat-

ing the strength of a relationship (Charikar, 2002); however, it
should be noted that its absolute value is not comparable between
different models and model specification setups. For example,
Ethayarajh (2019) demonstrated that word embeddings have differ-
ent distributions in different BERT layers, so that two random words
on average tend to have higher cosine similarity in higher as
opposed to lower layers. Thus, comparing two cosine based seman-
tic similarity scores between two different models or layers is not in-
terpretable; instead examine the relative difference in scores from
the same model/layer(s).

Functions: textSimilarity() and textDistance()

The textSimilarity() function computes the semantic similarity
between two embeddings, and the textSimilarityNorm() computes
the semantic similarity between one text variable and a word norm.
We also provide corresponding textDistance() and textDistance-
Norm() functions that compute the distance between the vectors
rather than the similarity (i.e., greater value indicates more differ-
ence rather than more similarity). For textDistance() the default is
euclidean distance, and for textSimilarity() the default is cosine sim-
ilarity. Semantic similarity scores can, for example, be used to mea-
sure psychological constructs independent from rating scales by
using word norms that represent the to-be-measured construct
(Kjell et al., 2019). A word norm can be created by asking partici-
pants to describe a psychological construct. The word norm can be

used to measure the semantic similarity between a person’s answer
to whether they experience harmony in their life to the word norm
describing harmony in life: If the score is high the person is seen to
have high harmony in life. Below this analysis is described.

Compute semantic similarity scores between two text columns,

using the previously created word_embeddings.

semantic_similarity_scores <- textSimilarity(

word_embeddings$texts$harmonytexts,

word_embeddings$texts$satisfactiontexts

)

Look at the first scores

head(semantic_similarity_scores)

OUTPUT

[1] .9281080 .9211980 .8998845 .8469789 .9453016 .9075929

Read word norms text (later we will use these for the semantic

centrality plot)

word_norms <- read.csv (

"Word_Norms_Mental_Health_Kjell2018_text.csv"

)

Read the word embeddings for theword norms

word_norms_embeddings <- readRDS(

"Word_Norms_Mental_Health_Kjell2018_text_embedding_L11

.rds"

)

Examine which word norms there are.

names(word_norms_embeddings$texts)

OUTPUT

[1] "harmonynorm” “disharmonynorm” "satisfactionnorm"

[4] "dissatisfactionnorm” “worrynorm" "depressionnorm"

Figure 4
Illustration of the Semantic Similarity of Two Words in a
Simplified Two-Dimensional Embedding Space

Note. This also holds when adding many more dimensions.

12 KJELL, GIORGI, AND SCHWARTZ

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

Ps
yc
ho
lo
gi
ca
lA

ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
tt
o
be

di
ss
em

in
at
ed

br
oa
dl
y.

[7] "notatallworried” “notatalldepressed" "singlewords_we"

Compute semanticsimilarity score between the harmony

answers and the harmony norm

Note that the descriptive word answers are used instead of

text answers to correspond with how the word norm was created.

norm_similarity_scores_harmony <- textSimilarityNorm(

word_embeddings$texts$harmonywords,

word_norms_embeddings$texts$harmonynorm

)

Correlating the semantic measure with thecorresponding

rating scale

psych::corr.test(

norm_similarity_scores_harmony,

Language_based_assessment_data_8$hilstotal

)

OUTPUT

Call:psych::corr.test(x=norm_similarity_scores_harmony,y=

Language_based_assessment_data_8$hilstotal)

Correlationmatrix

[1].59

SampleSize

[1]40

Probabilityvaluesadjustedformultipletests.

[1]0

Extended Functionality

In addition to implementations of standard analyses of text (the
functions listed above), text comes with several less established
novel functions. These are intended to support the core functional-
ities (and overtime become more empirically evaluated).

Words’ Position in the Embedding Space

There are many different ways to visualize the words in a data
set such as multidimensional scaling (MDS; e.g., Borg & Groenen,
2005), t-Distributed Stochastic Neighbor Embedding (t-SNE; Van
der Maaten, & Hinton, 2008) and Principal Component Analysis
(PCA; see Appendix for the text functions textPCA() and textPCA-
Plot()). Here we will briefly demonstrate two plot functions in text
for demonstrating potential basic uses of the word embeddings:
The Supervised Dimension Projection Plot shows words that are
significantly related to one compared with another group, where
the test statistics are tested in permutation test procedures. The
Semantic Centrality Plot shows the words that are most semanti-
cally central to a set of texts/words. Both functions plot the words’
position based on their word embeddings.

The Supervised Dimension Projection

The Supervised Dimension Projection compares two groups
(e.g., intervention versus nonintervention participant), responses to
different questions (e.g., harmony versus satisfaction responses), or
low versus high scorers on a rating scale using median split or
lower/higher quartiles. In short, we construct an embedding that
captures the difference between the two groups, a vector that forms
a line through the origin (the aggregated direction embedding);
then all individual words are “projected” onto that direction line
(where dot product is computed to “project” a vector onto another

vector; see Figure 5 for a visualization). More precisely, the plot is
based on the following steps:

Preprocessing.

1. Responses are divided into two groups (G1 and G2;
where a scale variable is split according to mean or lower
and higher quartile).

2. The aggregated word embeddings of the two groups are
computed: The G1 split aggregation embedding and the
G2 split aggregation embedding.

Supervised dimension projection statistics.

3. An Aggregated direction embedding is computed:
Aggregated direction embeddings = G2 split aggregation
embedding � G1 split aggregation embedding.

So, for example, the direction of harmony = Group(high
harmony) � Group(low harmony); where the direction is
seen to go through the origin and the aggregated direction
embedding.

4. All individual word embeddings are positioned (or anch-
ored) to the same point. So, for each word: Anchored
embedding = original embedding � aggregation embed-
ding of G1 and G2 from Step 2.

5. To project onto the Aggregated direction embedding (i.e.,
from Step 3), the dot product is computed between the
Anchored embedding of all individual words (i.e., from Step
4) and the Aggregated direction embedding (i.e., Step 3).
That is, dot product(Anchored we, Aggregated direction
we) = a point on the direction.

Computing p-values with a permutation procedure.

6. A permuted null distribution of Supervised Dimension
Projections is created by computing the dot product
between randomly selected word embeddings from G1 and
G2, and a Permuted aggregated direction embedding (i.e.,
the direction embedding is also created by randomly swap-
ping words fromG1 and G2).

7. The p-values for each word are computed by comparing
their Supervised Dimension Projection with the permuted
null distribution of Supervised Dimension Projections from
Step 6, as in previous descriptions; while correcting for
multiple comparisons according to selected methods.

Functions

The plotting is made with two functions, in two steps: First, text-
Projection() analyzes the data, including Supervised Dimension Pro-
jections, null distributions, p-values, and frequencies. Second,
textProjectionPlot() uses the output from textProjection() to plot the
words, including providing design options for the figure. Dividing the
plotting procedure into these two stepsmakes the processmore transpar-
ent (i.e., the user naturally sees the output according to which the words
will be plotted) as well as beingmore flexible by enabling the user to try

THE TEXT-PACKAGE 13

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

Ps
yc
ho
lo
gi
ca
lA

ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
tt
o
be

di
ss
em

in
at
ed

br
oa
dl
y.

out different visual settings without the need to rerun the heavy compu-
tational processes.
To plot words, each individual word type needs to be repre-

sented by an embedding: a word type embedding (i.e., a single
embedding per word type taken from aggregating token embed-
dings across all instances of all word types in the given data).4 In
textEmbed() the optional setting aggregation_from_tokens_to_-
word_types, controls how the word types embeddings are aggre-
gated (default = “mean”).

textProjection().

Extract word type embeddings and text embeddings for

harmony words

harmony_words_embeddings <- textEmbed(

texts= Language_based_assessment_data_8["harmonywords"],

aggregation_from_layers_to_tokens ="concatenate",

aggregation_from_tokens_to_texts="mean",

aggregation_from_tokens_to_word_types="mean",

keep_token_embeddings= FALSE

)

#Pre-processing dataforplotting

projection_results<- textProjection(

words =Language_based_assessment_data_8$harmonywords,

word_embeddings= harmony_words_embeddings$texts,

word_types_embeddings=harmony_words_embeddings$word_types,

x=Language_based_assessment_data_8$hilstotal,

y=Language_based_assessment_data_8$age

)

projection_results$word_data

Figure 5
Illustrations of the Supervised Dimension Projection Method

Note. The illustration exemplifies the reduction of two dimensions to one dimension, where in practice there
are many more dimensions. See the online article for the color version of this figure.

4Word “types” refers to a word in general as opposed to a word “token”
that refers to a specific instance of a word. For example, in “The horse
raced past the other horse” the word type “horse” appears twice: as the
second- and seventh-word tokens. Each token for horse can have a different
embedding so to get a single embedding for the word type, “horse,” they
must be aggregated in some way. For noncontextual embeddings that are
always the same for the same word, all one has, technically, are
embeddings of the word type and not the specific instance (tokens).

14 KJELL, GIORGI, AND SCHWARTZ

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

Ps
yc
ho
lo
gi
ca
lA

ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
tt
o
be

di
ss
em

in
at
ed

br
oa
dl
y.

PART OF OUTPUT

words
<chr>

dot.x
<dbl>

p_values_dot.x
<dbl>

accepting 1.21 0.885
agreeing 15.1 0.0000247
alcohol �10.2 0.0366
amazed �0.678 0.818

. . . with 288more rows, and 6 more variables

textProjectionPlot().

Supervised Dimension Projection Plot

To avoid warnings—and that words do not get plotted, first

increase the max.overlaps for the entire session:

options(ggrepel.max.overlaps = 1000)

plot_projection <- textProjectionPlot(

word_data = projection_results,

min_freq_words_plot = 1,

plot_n_word_extreme = 10,

plot_n_word_frequency = 5,

plot_n_words_middle = 5,

y_axes = FALSE,

p_alpha = .05,

p_adjust_method= "fdr",

title_top = "Harmony words (Supervised

Dimension Projection"),

x_axes_label = "Low vs. High Harmony in Life

Scale Score",

y_axes_label = "",

bivariate_color_codes = c(

"#FFFFFF", "#FFFFFF", "#FFFFFF",

"#E07F6A", "#EAEAEA", "#85DB8E",

"#FFFFFF", "#FFFFFF", "#FFFFFF"

)

plot_projection$final_plot

accepting

amazedanxious

ashamed

beingbrotherhood

caring
content

driven
extended fair

good

happyhopeless

humiliated
impatient

incompatible
kinship

love
overwhelmed

peace
peaceful

positive

rattled

respectful

sad

scattered

sunshineunstable

unsure

warm

well

−30 −20 −10 0 10 20 30
Low to High Harmony in Life Scale Score

Frequency

a a a
2.5 5.0 7.5

Harmony Words Responses (Supervised Dimension Projection)

71 142 82

x

SDP

Note. DPP = Dot Product Projection. The dots represent the point for visible words. See the online article for the color version of this
figure.

SupervisedDimension Projection Plot

plot_projection_2D <- textProjectionPlot(

word_data = projection_results,

min_freq_words_plot = 1,

plot_n_word_extreme = 10,

plot_n_word_frequency = 5,

plot_n_words_middle = 5,

y_axes = TRUE,

p_alpha = .05,

p_adjust_method = "fdr",

title_top = "Harmony Words Responses

(Supervised Dimension Projection)",

x_axes_label = "Low vs. High Harmony in Life Scale Score",

y_axes_label = "Low vs.High Age",

bivariate_color_codes = c(

"#E07F6a", "#60A1F7", "#85DB8E",

"#FF0000", "#EAEAEA", "#5dc688",

"#E07F6a", "#60A1F7", "#85DB8E"

)

)

plot_projection_2D$final_plot

THE TEXT-PACKAGE 15

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

Ps
yc
ho
lo
gi
ca
lA

ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
tt
o
be

di
ss
em

in
at
ed

br
oa
dl
y.

View plot (see Figure 6)

View plot (see Figure 7)

Figure 6
A One-Dimensional Plot From textProjectionPlot()

accepting
agreeing

amazed

amused

anger

anxiousashamed

balance

being

brotherhood
caring

clash
cold

communion

compatible

confused
connected

content

depression

disconnected

dislike

driven
extended

fair

fear

feelings

good

grounded

guilt

happy

hatredhopeless

humiliated

impatient

incompatible kinship

loss

love

nature

open

orderly

overwhelmed

peace
peaceful

pleasure

positive

present

proud

quiet
rattled

respectful

sad

sadness

scattered

sunshine

tired

unfit

unstable

unsure

warm
well

−20

−10

0

10

030201001−02−03−
Low vs. High Harmony in Life Scale Score

Lo
w

 v
s.

H
ig

h
A

ge

Frequency

a a a
2.5 5.0 7.5

Harmony Words Responses (Supervised Dimension Projection)

2 37 0

33 44 64

36 37 18

x

y

SDP

Note. A supervised dimension projection plot of words significantly differing between low versus high harmony in life scale score (x-axis) and low versus high age
(y-axis). The font size of the words indicates their frequency. The color indicates whether a word is significant or not significant (gray) when correcting for multiple
comparisons using the false discovery rate (FDR). The color-legend in the lower left corner indicates the color and number of significant words in each part of the fig-
ure (e.g., there are 18 light green words that are significantly high on the x-axis and low on the y-axis). The dots represent the point for visible words. The values on
the x- and y-axes represent the dot product projection value (these should be compared with caution between figures); DPP = Dot product projection. See the online
article for the color version of this figure.

Words’ Semantic Centrality

The Semantic Centrality Plot aims to highlight words that are
semantically similar to the aggregated word embeddings of all
words in the given text variable. Hence, it describes the psychologi-
cal construct or latent meaning of a text under investigation in the
word embedding space. The aim is to highlight words from one
type of response, rather than comparing two groups/dimensions.
The statistics are computed with the textCentrality() function. This
is achieved in the following steps:

1. Computing the Aggregated word embedding (Awe) based
on all words.

2. Computing the observed semantic similarity scores
between individual word’s embeddings (Iwe) and the
aggregated word embedding (Awe).
cos(Iwe, Awe) = semantic similarity score

Using the textCentralityPlot() it is possible to select the most
extreme semantic centrality scores, middle scores as well as select-
ing words based on their frequency.

Functions

Computing words’ centrality (semantic similarity) score

to the aggregatedembedding of all words

centrality_results <- textCentrality(

words= word_norms$satisfactionnorm,

word_embeddings= word_norms_embeddings$texts

$satisfactionnorm,

word_types_embeddings = word_norms_

embeddings$word_types

)

centrality_plot <- textCentralityPlot(

word_data = centrality_results,

min_freq_words_test = 2,

plot_n_word_extreme = 10,

plot_n_word_frequency = 5,

plot_n_words_middle = 5,

title_top = "Satisfaction with life word norm:

Semantic Centrality Plot",

x_axes_label = "Satisfaction with Life

Semantic Centrality"

)

centrality_plot$final_plot

16 KJELL, GIORGI, AND SCHWARTZ

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

Ps
yc
ho
lo
gi
ca
lA

ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
tt
o
be

di
ss
em

in
at
ed

br
oa
dl
y.

View plot (see Figure 8)

Figure 7
A Two-Dimensional Plot From textProjectionPlot()

Summary

The text-package has two main aims: First, to work as a modular
solution for transforming text to state-of-the-art word embeddings
for R-users. Second, to work as an end-to-end solution focusing
on relevant functions for social sciences and human-level analyses.
It is our hope that the text-package can increase the ability of psycho-
logical scientists to analyze, with state-of-the-art computational
techniques, one of the fundamental and key behaviors of people: nat-
ural language.

THE TEXT-PACKAGE 17

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

Ps
yc
ho
lo
gi
ca
lA

ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
tt
o
be

di
ss
em

in
at
ed

br
oa
dl
y.

References

Alsentzer, E., Murphy, J. R., Boag, W., Weng, W.-H., Jin, D., Naumann, T.,
& McDermott, M. (2019). Publicly available clinical BERT embeddings.
arXiv, Preprint ArXiv:1904.03323.

Andersen, N., & Zehner, F. (2021). shinyReCoR: A shiny application for
automatically coding text responses using R. Psych, 3(3), 422–446.
https://doi.org/10.3390/psych3030030

, S., & Meštrović, A. (2020). Survey of neural
text representation models. Information, 11(11), Article 511. https://
doi.org/10.3390/info11110511

Bache, S. M., &Wickham, H. (2014).magrittr: A forward-pipe operator for
R. https://CRAN.R-project.org/package=magrittr

Bates, D., & Maechler, M. (2019). Matrix: Sparse and dense matrix classes
and methods. https://CRAN.R-project.org/package=Matrix

Beltagy, I., Lo, K., & Cohan, A. (2019). SciBERT: A pretrained language
model for scientific text. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP) (pp. 3606–3611). Association for Computational
Linguistics. https://doi.org/10.18653/v1/D19-1371

Benoit, K., Watanabe, K., Wang, H., Nulty, P., Obeng, A., Müller, S., &
Matsuo, A. (2018). quanteda: An R package for the quantitative analysis
of textual data. Journal of Open Source Software, 3(30), Article 774.
https://doi.org/10.21105/joss.00774

Bird, S., Klein, E., & Loper, E. (2009). Natural Language Processing with
Python: Analyzing text with the natural language toolkit. O’Reilly
Media, Inc.

Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet allocation.
Journal of Machine Learning Research, 3, 993–1022.

Bommasani, R., Hudson, D. A., Adeli, E., Altman, R., Arora, S., von Arx, S.,
Bernstein, M. S., Bohg, J., Bosselut, A., & Brunskill, E. (2021). On the
opportunities and risks of foundation models. arXiv, Preprint
ArXiv:2108.07258.

Borg, I., & Groenen, P. J. (2005).Modern multidimensional scaling: Theory
and applications. Springer Science & Business Media.

Bradley, M. M., & Lang, P. J. (1999). Affective norms for English words
(ANEW): Instruction manual and affective ratings. Technical Report
C-1, The Center for Research in Psychophysiology, University of Florida.

Bratt, J., & Harmon, J. (2020). RBERT: R Implementation of BERT. R pack-
age version 0.1.11. https://github.com/jonathanbratt/RBERT

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P.,
Neelakantan, A., Shyam, P., Sastry, G., & Askell, A. (2020). Language
models are few-shot learners. arXiv, Preprint ArXiv:2005.14165.

Browne, M. W. (2000). Cross-validation methods. Journal of Mathematical
Psychology, 44(1), 108–132. https://doi.org/10.1006/jmps.1999.1279

Campbell, R. S., & Pennebaker, J. W. (2003). The secret life of pronouns:
Flexibility in writing style and physical health. Psychological Science,
14(1), 60–65. https://doi.org/10.1111/1467-9280.01419

Carlson, T. A., Simmons, R. A., Kriegeskorte, N., & Slevc, L. R. (2014). The
emergence of semantic meaning in the ventral temporal pathway. Journal
of Cognitive Neuroscience, 26(1), 120–131. https://doi.org/10.1162/jocn_
a_00458

Chan, C., Chan, G. C., Leeper, T. J., & Becker, J. (2018). rio: A Swiss-army
knife for data file I/O. R package version 0.5.29. https://cran.r-project.org/
web/packages/rio/citation.html

Chandrasekaran, D., & Mago, V. (2022). Evolution of semantic similarity—
A survey. [CSUR]. ACM Computing Surveys, 54(2), 1–37. https://doi.org/
10.1145/3440755

Charikar, M. S. (2002). Similarity estimation techniques from rounding algo-
rithms. In Proceedings of the Thirty-Fourth Annual ACM Symposium on
Theory of Computing (pp. 380–;388;). Association for Computing
Machinery. https://doi.org/10.1145/509907.509965

Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., & Harshman,
R. (1990). Indexing by latent semantic analysis. Journal of the American
Society for Information Science, 41(6), 391–407. https://doi.org/10.1002/
(SICI)1097-4571(199009)41:6,391::AID-ASI1.3.0.CO;2-9

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT:
Pre-training of Deep Bidirectional Transformers for Language
Understanding. In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short Papers)
(pp. 4171–4186). Association for Computational Linguistics. https://
doi.org/10.18653/v1/N19-1423

Diener, E., Emmons, R. A., Larsen, R. J., & Griffin, S. (1985). The satisfac-
tion with life scale. Journal of Personality Assessment, 49(1), 71–75.
https://doi.org/10.1207/s15327752jpa4901_13

Dougal, S., & Rotello, C. M. (2007). “Remembering” emotional words is
based on response bias, not recollection. Psychonomic Bulletin &
Review, 14(3), 423–429. https://doi.org/10.3758/BF03194083

Dowle, M., & Srinivasan, A. (2019). data.table: Extension of ‘data.fram’.
https://CRAN.R-project.org/package=data.table

Eichstaedt, J. C., Kern, M. L., Yaden, D. B., Schwartz, H. A., Giorgi, S.,
Park, G., Hagan, C. A., Tobolsky, V., Smith, L. K., & Buffone, A.
(2021). Closed-and open-vocabulary approaches to text analysis: A

Babić, K., Martinčić-Ipšić

clothes

comfortableeducation excellent

excitement

family

food
friends

friendship

fun
generous

happiness

happy
health

love
mind

money
plantsprepared

purpose

security
strong success

tv

warmth

9.08.07.06.05.0
Satisfaction with Life Semantic Centrality

Frequency

a a a a
10 20 30 40

Satisfaction with life word norm: Semantic Centrality Plot

Figure 8
A Plot From textCentralityPlot()

R-Packages

R-packages used in text include:

dplyr (Wickham et al., 2020), tokenizers (Mullen et al., 2018), psych
(Revelle, 2019), stringr (Wickham, 2019), tidyr (Wickham & Henry,
2020), ggplot2 (Wickham, 2016), ggrepel (Slowikowski, 2020), cow-
plot (Wilke, 2019), scales (Wickham & Seidel, 2020), rlang (Henry &
Wickham, 2020b), purrr (Henry & Wickham, 2020a), Matrix (Bates
& Maechler, 2019), stringi (Gagolewski, 2020), data.table (Dowle &
Srinivasan, 2019), magrittr (Bache & Wickham, 2014), parsnip (Kuhn
& Vaughan, 2020a), recipes (Kuhn & Wickham, 2020), reticulate
(Ushey et al., 2020), rsample (Kuhn et al., 2020), tune (Kuhn, 2020),
workflows (Vaughan, 2020), yardstick (Kuhn & Vaughan, 2020b),
broom (Robinson & Hayes, 2020), knitr (Xie, 2014), rmarkdown (Xie
et al., 2018), testthat (Wickham, 2011), tibble (Müller & Wickham,
2020), and rio (Chan et al., 2018).

Python Libraries

Python packages integrated within the text-package include:

PyTorch (Paszke et al., 2019), transformers (Wolf et al., 2019), nltk
(Bird et al., 2009), and numpy (Oliphant, 2006).

Note. A Semantic Centrality Plot illustrating the words composing the
Satisfaction with life word norm. The size of the words represents their fre-
quency, the color their position. The values on the x-axes represent the
semantic similarity scores (measured as the cosine score) between each
word’s embedding and the aggregated word embedding of all words in the
word norm. The dots represent the point for visible words. See the online arti-
cle for the color version of this figure.

https://doi.org/10.3390/psych3030030
https://doi.org/10.3390/info11110511
https://doi.org/10.3390/info11110511
https://CRAN.R-project.org/package=magrittr
https://CRAN.R-project.org/package=Matrix
https://doi.org/10.18653/v1/D19-1371
https://doi.org/10.21105/joss.00774
https://doi.org/10.21105/joss.00774
https://github.com/jonathanbratt/RBERT
https://doi.org/10.1006/jmps.1999.1279
https://doi.org/10.1111/1467-9280.01419
https://doi.org/10.1162/jocn_a_00458
https://doi.org/10.1162/jocn_a_00458
https://cran.r-project.org/web/packages/rio/citation.html
https://cran.r-project.org/web/packages/rio/citation.html
https://doi.org/10.1145/3440755
https://doi.org/10.1145/3440755
https://doi.org/10.1145/509907.509965
https://doi.org/10.1002/(SICI)1097-4571(199009)41:6391::AID-ASI13.0.CO;2-9
https://doi.org/10.1002/(SICI)1097-4571(199009)41:6391::AID-ASI13.0.CO;2-9
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1207/s15327752jpa4901_13
https://doi.org/10.3758/BF03194083
https://CRAN.R-project.org/package=data.table

18 KJELL, GIORGI, AND SCHWARTZ

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

Ps
yc
ho
lo
gi
ca
lA

ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
tt
o
be

di
ss
em

in
at
ed

br
oa
dl
y.

review, quantitative comparison, and recommendations. Psychological
Methods, 26(4), 398–427. https://doi.org/10.1037/met0000349

Eichstaedt, J. C., Schwartz, H. A., Kern, M. L., Park, G., Labarthe, D. R.,
Merchant, R. M., Jha, S., Agrawal, M., Dziurzynski, L. A., Sap, M.,
Weeg, C., Larson, E. E., Ungar, L. H., & Seligman, M. E. (2015).
Psychological language on Twitter predicts county-level heart disease
mortality. Psychological Science, 26(2), 159–169. https://doi.org/10
.1177/0956797614557867

Eichstaedt, J. C., Smith, R. J., Merchant, R. M., Ungar, L. H., Crutchley, P.,
iuc-Pietro, D., Asch, D. A., & Schwartz, H. A. (2018). Facebook

language predicts depression in medical records. Proceedings of the
National Academy of Sciences of the United States of America, 115(44),
11203–11208. https://doi.org/10.1073/pnas.1802331115

Erk, K. (2012). Vector space models of word meaning and phrase meaning:
A survey. Language and Linguistics Compass, 6(10), 635–653. https://
doi.org/10.1002/lnco.362

Ethayarajh, K. (2019). How contextual are contextualized word representa-
tions? Comparing the geometry of BERT, ELMo, and GPT-2 embeddings.
arXiv, Preprint ArXiv:1909.00512. https://doi.org/10.18653/v1/D19-
1006

Feinerer, I., & Hornik, K. (2019). tm: Text mining package. https://cran.r-
project.org/web/packages/tm/

Firth, J. R. (1957). A synopsis of linguistic theory 1930–1955. In F. Palmer
(Ed.), Studies in linguistic analysis: Philological Society (reprinted in
1968: Selected Papers of J. R. Firth). Longman.

Gagné, C. L., Spalding, T. L., & Ji, H. (2005). Re-examining evidence for the
use of independent relational representations during conceptual combina-
tion. Journal of Memory and Language, 53(3), 445–455. https://doi.org/
10.1016/j.jml.2005.03.006

Gagolewski,M. (2020).R package stringi: Character string processing facil-
ities. http://www.gagolewski.com/software/stringi/

Ganesan, A. V., Matero, M., Ravula, A. R., Vu, H., & Schwartz, H. A.
(2021). Empirical evaluation of pre-trained transformers for human-level
NLP: The role of sample size and dimensionality. arXiv, Preprint
ArXiv:2105.03484. https://doi.org/10.18653/v1/2021.naacl-main.357

Ganguli, S., & Sompolinsky, H. (2012). Compressed sensing, sparsity, and
dimensionality in neuronal information processing and data analysis.
Annual Review of Neuroscience, 35(1), 485–508. https://doi.org/10
.1146/annurev-neuro-062111-150410

Garcia, D., & Sikström, S. (2013). Quantifying the semantic representations
of adolescents’ memories of positive and negative life events. Journal of
Happiness Studies, 14(4), 1309–1323. https://doi.org/10.1007/s10902-
012-9385-8

Golub, G., & Kahan, W. (1965). Calculating the singular values and
pseudo-inverse of a matrix. Journal of the Society for Industrial and
Applied Mathematics, Series B. Numerical Analysis, 2(2), 205–224.
https://doi.org/10.1137/0702016

Grolemund, G., &Wickham, H. (2018). R for data science. O’Reilly Media.
Henry, L., & Wickham, H. (2020a). purrr: Functional programming tools.
https://CRAN.R-project.org/package=purrr

Henry, L., &Wickham, H. (2020b). rlang: Functions for base types and core
R and “Tidyverse” features. https://CRAN.R-project.org/package=rlang

Ho, T. K. (1995). Random decision forests. In Proceedings of 3rd
International Conference on Document Analysis and Recognition,
August 1995 (Vol. 1, pp. 278–282). IEEE Computer Society.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural
Computation, 9(8), 1735–1780. https://doi.org/10.1162/neco.1997.9.8
.1735

Hoerl, A. E., & Kennard, R. W. (1970). Ridge regression: Biased estimation
for nonorthogonal problems. Technometrics, 12(1), 55–67. https://doi.org/
10.1080/00401706.1970.10488634

Honnibal, M., &Montani, I. (2017). spaCy 2: Natural language understand-
ing with Bloom embeddings, convolutional neural networks and incre-
mental parsing. Advance online publication.

Hossain, N., Krumm, J., Gamon, M., & Kautz, H. (2020). Semeval-2020
Task 7: Assessing humor in edited news headlines. arXiv, Preprint
arXiv:2008.00304. https://doi.org/10.18653/v1/2020.semeval-1.98

Iliev, R., Dehghani, M., & Sagi, E. (2015). Automated text analysis in psy-
chology: Methods, applications, and future developments. Language
and Cognition, 7(2), 265–290. https://doi.org/10.1017/langcog.2014.30

James, G., Witten, D., Hastie, T., Tibshirani, R., Sohil, F., Sohali, M. U., &
Shabbir, J. (2021). An introduction to statistical learning with applications
in R. https://hastie.su.domains/ISLR2/ISLRv2_website.pdf

Jawahar, G., Sagot, B., & Seddah, D. (2019). What does BERT learn about
the structure of language? In ACL 2019-57th Annual Meeting of the
Association for Computational Linguistics, July 2019, Florence, Italy
(pp. 3651–3657). Association for Computational Linguistics.

Jurafsky, D., &Martin, J. (2020). Speech and language processing: An intro-
duction to Natural Language Processing, computational linguistics, and
speech recognition. https://web.stanford.edu/~jurafsky/slp3/ed3book.pdf

Kern, M. L., Park, G., Eichstaedt, J. C., Schwartz, H. A., Sap, M., Smith, L.
K., & Ungar, L. H. (2016). Gaining insights from social media language:
Methodologies and challenges. Psychological Methods, 21(4), 507–525.
https://doi.org/10.1037/met0000091

Kjell, K., Johnsson, P., & Sikström, S. (2021). Freely generated word
responses analyzed with artificial intelligence predict self-reported symp-
toms of depression, anxiety, and worry. Frontiers in Psychology, 12,
Article 602581. https://doi.org/10.3389/fpsyg.2021.602581

Kjell, O. N. E., Daukantait , D., Hefferon, K., & Sikström, S. (2016). The
Harmony in Life Scale Complements the Satisfaction with Life Scale:
Expanding the conceptualization of the cognitive component of subjective
well-being. Social Indicators Research, 126(2), 893–919. https://doi.org/
10.1007/s11205-015-0903-z

Kjell, O. N. E., Kjell, K., Garcia, D., & Sikström, S. (2019). Semantic mea-
sures: Using Natural Language Processing to measure, differentiate, and
describe psychological constructs. Psychological Methods, 24(1), 92–
115. https://doi.org/10.1037/met0000191

Kjell, O. N. E., Sikström, S., Kjell, K., & Schwartz, H. A. (2022). Natural
language analyzed with AI-based transformers predict traditional subjec-
tive well-being measures approaching the theoretical upper limits in accu-
racy. Scientific Reports, 12(1), Article 3918. https://doi.org/10.1038/
s41598-022-07520-w

Kuhn, M. (2020). tune: Tidy tuning tools. https://CRAN.R-project.org/
package=tune

Kuhn, M., & Vaughan, D. (2020a). parsnip: A common API to modeling and
analysis functions. https://CRAN.R-project.org/package=parsnip

Kuhn, M., & Vaughan, D. (2020b). yardstick: Tidy characterizations of
model performance. https://CRAN.R-project.org/package=yardstick

Kuhn, M., & Wickham, H. (2020). recipes: Preprocessing tools to create
design matrices. https://CRAN.R-project.org/package=recipes

Kuhn, M., Chow, F., & Wickham, H. (2020). rsample: General resampling
infrastructure. https://CRAN.R-project.org/package=rsample

Lauriola, I., Lavelli, A., & Aiolli, F. (2022). An introduction to Deep
Learning in Natural Language Processing: Models, techniques, and
tools. Neurocomputing, 470, 443–456. https://doi.org/10.1016/j.neucom
.2021.05.103

Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., & Soricut, R.
(2019). Albert: A lite bert for self-supervised learning of language repre-
sentations. arXiv preprint arXiv:1909.11942.

Libovickỳ, J., Rosa, R., & Fraser, A. (2019). How language-neutral is mul-
tilingual BERT? arXiv, Preprint ArXiv:1911.03310.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M.,
Zettlemoyer, L., & Stoyanov, V. (2019). Roberta: A robustly optimized
BERT pretraining approach. arXiv, Preprint ArXiv:1907.11692.

Matero, M., Hung, A., & Schwartz, H. A. (2021).Understanding RoBERTa’s
mood: The role of contextual-embeddings as user-representations for
depression prediction. arXiv, Preprint ArXiv:2112.13795.

Preoţ

ė

https://doi.org/10.1037/met0000349
https://doi.org/10.1177/0956797614557867
https://doi.org/10.1177/0956797614557867
https://doi.org/10.1073/pnas.1802331115
https://doi.org/10.1002/lnco.362
https://doi.org/10.18653/v1/D19-1006
https://CRAN.R-project.org/package=&hx2122;
https://CRAN.R-project.org/package=&hx2122;
https://doi.org/10.1016/j.jml.2005.03.006
https://doi.org/10.1016/j.jml.2005.03.006
http://www.gagolewski.com/software/stringi/
https://doi.org/10.18653/v1/2021.naacl-main.357
https://doi.org/10.1146/annurev-neuro-062111-150410
https://doi.org/10.1146/annurev-neuro-062111-150410
https://doi.org/10.1007/s10902-012-9385-8
https://doi.org/10.1007/s10902-012-9385-8
https://doi.org/10.1137/0702016
https://CRAN.R-project.org/package=purrr
https://CRAN.R-project.org/package=rlang
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1080/00401706.1970.10488634
https://doi.org/10.1080/00401706.1970.10488634
https://doi.org/10.18653/v1/2020.semeval-1.98
https://doi.org/10.1017/langcog.2014.30
https://hastie.su.domains/ISLR2/ISLRv2_website.pdf
https://web.stanford.edu/&hx223C;jurafsky/slp3/ed3book.pdf
https://doi.org/10.1037/met0000091
https://doi.org/10.3389/fpsyg.2021.602581
https://doi.org/10.1007/s11205-015-0903-z
https://doi.org/10.1007/s11205-015-0903-z
https://doi.org/10.1037/met0000191
https://doi.org/10.1038/s41598-022-07520-w
https://doi.org/10.1038/s41598-022-07520-w
https://CRAN.R-project.org/package=tune
https://CRAN.R-project.org/package=tune
https://CRAN.R-project.org/package=parsnip
https://CRAN.R-project.org/package=yardstick
https://CRAN.R-project.org/package=recipes
https://CRAN.R-project.org/package=rsample
https://doi.org/10.1016/j.neucom.2021.05.103
https://doi.org/10.1016/j.neucom.2021.05.103

THE TEXT-PACKAGE 19

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

Ps
yc
ho
lo
gi
ca
lA

ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
tt
o
be

di
ss
em

in
at
ed

br
oa
dl
y.

Matero, M., Idnani, A., Son, Y., Giorgi, S., Vu, H., Zamani, M., Limbachiya,
P., Guntuku, S. C., & Schwartz, H. A. (2019). Suicide risk assessment with
multi-level dual-context language and BERT. In Proceedings of the sixth
workshop on computational linguistics and clinical psychology (pp. 39–
44). Association for Computational Linguistics. https://doi.org/10
.18653/v1/W19-3005

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013).
Distributed representations of words and phrases and their compositional-
ity. In NIPS’13: Proceedings of the 26th International Conference on
Neural Information Processing Systems (pp. 3111–3119). Curran
Associates, Inc.

Morishita, T., Morio, G., Ozaki, H., & Miyoshi, T. (2020). Hitachi at
SemEval-2020 task 7: Stacking at scale with heterogeneous language
models for humor recognition. In Proceedings of the Fourteenth
Workshop on Semantic Evaluation (pp. 791–803). International
Committee for Computational Linguistics. https://doi.org/10.18653/v1/
2020.semeval-1.101

Mosier, C. I. (1951). I. Problems and designs of cross-validation 1.
Educational and Psychological Measurement, 11(1), 5–11. https://
doi.org/10.1177/001316445101100101

Mullen, L. A., Benoit, K., Keyes, O., Selivanov, D., & Arnold, J. (2018).
Fast, consistent tokenization of natural language text. Journal of Open
Source Software, 3(23), Article 655. https://doi.org/10.21105/joss.00655

Müller, K., &Wickham, H. (2020). tibble: Simple data frames. https://CRAN
.R-project.org/package=tibble

Nayak, P. (2019). Understanding searches better than ever before. https://
blog.google/products/search/search-language-understanding-bert/.

Oliphant, T. E. (2006). A guide to NumPy (Vol. 1). Trelgol Publishing USA.
Osgood, C. E., Suci, G. J., & Tannenbaum, P. H. (1957). The measurement of
meaning. University of Illinois Press.

Otter, D. W., Medina, J. R., & Kalita, J. K. (2019). A survey of the usages of
deep learning in Natural Language Processing. arXiv, 1807.10854 [Cs].
http://arxiv.org/abs/1807.10854

Palomino, D., & Ochoa-Luna, J. (2020). Palomino-Ochoa at SemEval-2020
Task 9: Robust system based on transformer for code-mixed sentiment
classification. arXiv, Preprint arXiv:2011.09448. https://doi.org/10
.18653/v1/2020.semeval-1.124

Park, G., Schwartz, H. A., Eichstaedt, J. C., Kern, M. L., Kosinski, M.,
Stillwell, D. J., Ungar, L. H., & Seligman, M. E. P. (2015). Automatic per-
sonality assessment through social media language. Journal of Personality
and Social Psychology, 108(6), 934–952. https://doi.org/10.1037/
pspp0000020

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen,
T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E.,
DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L.,
. . . Chintala, S. (2019). PyTorch: An imperative style, high-performance
deep learning library. In E. Fox & R. Garnett (Eds.), Advances in neural
information processing systems: Vol. 32 (pp. 8024–8035). Curran
Associates, Inc. http://papers.neurips.cc/paper/9015-pytorch-an-
imperative-style-high-performance-deep-learning-library.pdf

Qiu, X., Sun, T., Xu, Y., Shao, Y., Dai, N., & Huang, X. (2020). Pre-trained
models for Natural Language Processing: A survey. Science China.
Technological Sciences, 63(10), 1872–1897. https://doi.org/10.1007/
s11431-020-1647-3

R Core Team. (2022). R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing. https://www.R-
project.org/

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019).
Language models are unsupervised multitask learners. OpenAI Blog,
1(8), 9.

Revelle, W. (2019). psych: Procedures for psychological, psychometric, and
personality research. Northwestern University. https://CRAN.R-project
.org/package=psych

Robinson, D., & Hayes, A. (2020). broom: Convert statistical analysis
objects into tidy tibbles. https://CRAN.R-project.org/package=broom

Rogers, A., Kovaleva, O., & Rumshisky, A. (2020). A primer in Bertology:
What we know about how bert works. arXiv, Preprint ArXiv:2002.
12327.

Sanh, V., Debut, L., Chaumond, J., &Wolf, T. (2019).DistilBERT, a distilled
version of BERT: Smaller, faster, cheaper and lighter. ArXiv, Preprint
ArXiv:1910.01108.

Schwartz, H., Eichstaedt, J., Kern, M., Dziurzynski, L., Lucas, R., Agrawal,
M., Park, G., Lakshmikanth, S., Jha, S., Seligman,M., &Ungar, L. (2013).
Characterizing geographic variation in well-being using tweets.
Proceedings of the International AAAI Conference on Web and Social
Media, 7(1), 583–591.

Schwartz, H. A., Giorgi, S., Sap, M., Crutchley, P., Ungar, L., & Eichstaedt,
J. (2017, September). Dlatk: Differential language analysis toolkit. In
Proceedings of the 2017 conference on empirical methods in Natural
Language Processing: System demonstrations (pp. 55–60). ACL.

Sikström, S., Kjell, O. N. E., &Kjell, K. (2018). Semantic excel: An introduc-
tion to a user-friendly online software application for statistical analyses
of text data. PsyArXiv, https://doi.org/10.31234/osf.io/z9chp

Silge, J., & Robinson, D. (2016). tidytext: Text mining and analysis using
tidy data principles in R. Journal of Open Source Software, 1(3), Article
37. https://doi.org/10.21105/joss.00037

Slowikowski, K. (2020). ggrepel: Automatically position non-overlapping
text labels with “ggplot2.” https://CRAN.R-project.org/package=ggrepel

Son, Y., Clouston, S. A., Kotov, R., Eichstaedt, J. C., Bromet, E. J.,
Luft, B. J., & Schwartz, H. A. (2020). World Trade Center responders
in their own words: Predicting PTSD symptom trajectories with
AI-based language analyses of interviews. arXiv, Preprint ArXiv:2011.
06457.

Sun, J., Schwartz, H. A., Son, Y., Kern, M. L., & Vazire, S. (2020). The lan-
guage of well-being: Tracking fluctuations in emotion experience through
everyday speech. Journal of Personality and Social Psychology, 118(2),
364–387. https://doi.org/10.1037/pspp0000244

Tausczik, Y. R., & Pennebaker, J. W. (2010). The psychological meaning of
words: LIWC and computerized text analysis methods. Journal of
Language and Social Psychology, 29(1), 24–54. https://doi.org/10.1177/
0261927X09351676

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso.
Journal of the Royal Statistical Society. Series B. Methodological, 58(1),
267–288. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x

Ushey, K., Allaire, J. J., & Tang, Y. (2020). reticulate: Interface to “Python.”
https://CRAN.R-project.org/package=reticulate

Van der Maaten, L., & Hinton, G. (2008). Visualizing data using
t-SNE. Journal of Machine Learning Research, 9(11), 2579–
2605.

Van Rossum, G., & Drake, F. L., Jr. (1995). Python reference manual.
Centrum voor Wiskunde en Informatica Amsterdam.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,
Kaiser, Ł., & Polosukhin, I. (2017). Attention is all you need. In Advances
in Neural Information Processing Systems (pp. 5998–6008). MIT Press.

Vaughan, D. (2020). workflows: Modeling workflows. https://CRAN.R-
project.org/package=workflows

Warriner, A. B., Kuperman, V., & Brysbaert, M. (2013). Norms of valence,
arousal, and dominance for 13,915 English lemmas. Behavior Research
Methods, 45(4), 1191–1207. https://doi.org/10.3758/s13428-012-0314-x

Wickens, T. D. (2014). The geometry of multivariate statistics. Psychology
Press. https://doi.org/10.4324/9781315806334

Wickham, H. (2011). testthat: Get Started with Testing. The R Journal, 3(1),
5–10. https://doi.org/10.32614/RJ-2011-002

Wickham, H. (2016). ggplot2: Elegant graphics for data analysis.
Springer-Verlag New York. https://ggplot2.tidyverse.org

Wickham, H. (2019). stringr: Simple, consistent wrappers for common string
operations. https://CRAN.R-project.org/package=stringr

https://doi.org/10.18653/v1/W19-3005
https://doi.org/10.18653/v1/2020.semeval-1.101
https://doi.org/10.1177/001316445101100101
https://doi.org/10.1177/001316445101100101
https://doi.org/10.21105/joss.00655
https://CRAN.R-project.org/package=tibble
https://CRAN.R-project.org/package=tibble
https://blog.google/products/search/search-language-understanding-bert/
https://blog.google/products/search/search-language-understanding-bert/
http://arxiv.org/abs/1807.10854
https://doi.org/10.18653/v1/2020.semeval-1.124
https://doi.org/10.18653/v1/2020.semeval-1.124
https://doi.org/10.1037/pspp0000020
https://doi.org/10.1037/pspp0000020
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1007/s11431-020-1647-3
https://doi.org/10.1007/s11431-020-1647-3
https://www.R-project.org/
https://CRAN.R-project.org/package=psych
https://CRAN.R-project.org/package=psych
https://CRAN.R-project.org/package=broom
https://doi.org/10.31234/osf.io/z9chp
https://doi.org/10.21105/joss.00037
https://CRAN.R-project.org/package=ggrepel
https://doi.org/10.1037/pspp0000244
https://doi.org/10.1177/0261927X09351676
https://doi.org/10.1177/0261927X09351676
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://CRAN.R-project.org/package=reticulate
https://CRAN.R-project.org/package=workflows
https://CRAN.R-project.org/package=workflows
https://doi.org/10.3758/s13428-012-0314-x
https://doi.org/10.3758/s13428-012-0314-x
https://doi.org/10.4324/9781315806334
https://doi.org/10.32614/RJ-2011-002

(Appendix follows)

20 KJELL, GIORGI, AND SCHWARTZ

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

Ps
yc
ho
lo
gi
ca
lA

ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
tt
o
be

di
ss
em

in
at
ed

br
oa
dl
y.

Wickham, H., & Henry, L. (2020). tidyr: Tidy messy data. https://CRAN.R-
project.org/package=tidyr

Wickham, H., & Seidel, D. (2020). scales: Scale functions for visualization.
https://CRAN.R-project.org/package=scales

Wickham, H., François, R., Henry, L., & Müller, K. (2020). dplyr: A gram-
mar of data manipulation. https://CRAN.R-project.org/package=dplyr

Wilke, C. O. (2019). cowplot: Streamlined plot theme and plot annotations
for “ggplot2.” https://CRAN.R-project.org/package=cowplot

Wold, S., Esbensen, K., & Geladi, P. (1987). Principal component analysis.
Chemometrics and Intelligent Laboratory Systems, 2(1–3), 37–52. https://
doi.org/10.1016/0169-7439(87)80084-9

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac,
P., Rault, T., Louf, R., & Funtowicz, M. (2019).Huggingface’s transform-
ers: State-of-the-art Natural Language Processing. ArXiv:1910.03771v1.

Xie, Y. (2014). knitr: A comprehensive tool for reproducible research in R. In
V. Stodden, F. Leisch, & R. D. Peng (Eds.), Implementing reproducible
computational research (pp. 3–32). Chapman and Hall.

Xie, Y., Allaire, J. J., & Grolemund, G. (2018). R markdown: The definitive
guide. CRC Press. https://doi.org/10.1201/9781138359444

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R. R., & Le, Q. V.
(2019). Xlnet: Generalized autoregressive pretraining for language under-
standing. Advances in neural information processing systems, 32.

Yarkoni, T., & Westfall, J. (2017). Choosing prediction over explanation in
psychology: Lessons from machine learning. Perspectives on
Psychological Science, 12(6), 1100–1122. https://doi.org/10.1177/
1745691617693393

Zirikly, A., Resnik, P., Uzuner, O., & Hollingshead, K. (2019). CLPsych
2019 shared task: Predicting the degree of suicide risk in Reddit posts.
In Proceedings of the sixth workshop on computational linguistics and
clinical psychology (pp. 24–33). ACL.

Zou, H., & Hastie, T. (2005). Regularization and variable selection via the
elastic net. Journal of the Royal Statistical Society. Series B, Statistical
Methodology, 67(2), 301–320. https://doi.org/10.1111/j.1467-9868.2005
.00503.x

https://ggplot2.tidyverse.org
https://CRAN.R-project.org/package=stringr
https://CRAN.R-project.org/package=tidyr
https://CRAN.R-project.org/package=tidyr
https://CRAN.R-project.org/package=scales
https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=cowplot
https://doi.org/10.1016/0169-7439(87)80084-9
https://doi.org/10.1201/9781138359444
https://doi.org/10.1177/1745691617693393
https://doi.org/10.1111/j.1467-9868.2005.00503.x
https://doi.org/10.1111/j.1467-9868.2005.00503.x

Appendix

PCA Plot

To create a traditional two-dimensional Principal
Component Analysis plot, it is possible to use textPCA and
textPCAPlot.

PCA results to be plotted

textPCA_results <- textPCA(

words=Language_based_assessment_data_8$satisfactionwords,

word_types_embeddings=harmony_words_embeddings$word_types

)

#PlottingthePCAresults

plot_PCA<-textPCAPlot(

word_data=textPCA_results,

min_freq_words_test=2,

plot_n_word_extreme=5,

plot_n_word_frequency=5,

plot_n_words_middle=5

)

plot_PCA$final_plot

angry

anxious

cheerful

content

depressed

driven

family
food

friends

frustration

good

happy

healthy

intelligence

lost
love

loved

loving

money
positive

strong

unsure

worried

−15 −10 −5 0 5 10
PC1

P
C

2

Frequency

a a a a
4 8 12 16

Principal Component (PC) Plot

0 3 2

5 41 2

0 4 1

PC1

P
C

2

PC

Note. See the online article for the color version of this figure.

Received March 17, 2021
Revision received September 19, 2022

Accepted October 4, 2022 n

THE TEXT-PACKAGE 21

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

Ps
yc
ho
lo
gi
ca
lA

ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
tt
o
be

di
ss
em

in
at
ed

br
oa
dl
y.

Figure A1
A plot from textPCA()

View plot (see Figure A1)

	The Text-Package: An R-Package for Analyzing and Visualizing Human Language Using Natural Language Processing and Transformers
	Objectives and Aims
	Current Alternatives
	Installation of Text
	Core Functionality
	Transforming Text to State-of-the-Art Word Embeddings
	Word Embeddings
	Decontextualized Word Embeddings: A Bag of Words
	Contextualized Word Embeddings and Word Order
	The Deep Neural Network Architecture: The Layers and Hidden States
	Self-Attention
	Performance of BERT
	Accessible Pretrained Language Models in Text
	Model and Word Embedding Specifics

	Functions: Mapping Text to Numbers (i.e., Word Embeddings)
	textEmbed()
	The Language Model
	The Layers

	Predictive Modeling With Word Embeddings
	Word Embeddings as Input to a Predictive Model
	Cross Validation
	K-Fold Cross Validation
	Applying Predictive Models to New Data
	Functions

	Computing Semantic Similarity and Distance
	Functions: textSimilarity() and textDistance()

	Extended Functionality
	Words’ Position in the Embedding Space
	The Supervised Dimension Projection
	Functions
	Words’ Semantic Centrality
	Functions

	Summary
	R-Packages
	Python Libraries

	References
	PCA Plot

